sashakrotova943
?>

Одна сторона треугольника равна 4 см., а сумма двух других 8см.найдите неизвестные стороны треугольника если длина каждой из них равна целому числу сантиметров

Геометрия

Ответы

zverevahelen
Тут может быть несколько вариантов: 1 и 7, 2 и 6, 3 и 5, 4 и 4
tsigankova2018
Є лише два варіанти відповіді перше це 3 см і 5 см  друге 4 см і 4 см  чому інші ні тому що є правило з геометрії сума двох сторін трикутника має бути більшою за льбу іншу сторону тобто 1 і 7 1+4 =5 а пять менше 7 дальше 2 і 6 2+4 = 6 рівне з 6 но не більше тому є лише два варіанти 
mos-5nica
Только половина :   в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. доказательство пусть δ abc – равнобедренный с основанием ab, и cd – медиана, проведенная к основанию. в треугольниках cad и cbd углы cad и cbd равны, как углы при основании равнобедренного треугольника , стороны ac и bc равны по определению равнобедренного треугольника, стороны ad и bd равны, потому что d – середина отрезка ab . отсюда получаем, что δ acd = δ bcd . из равенства треугольников следует равенство соответствующих углов: acd = bcd, adc = bdc . из первого равенства следует, что cd – биссектриса. углы adc и bdc смежные, и в силу второго равенства они прямые, поэтому cd – высота треугольника. теорема доказана.
Sharap

Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.

13x+4y-7=13\cdot 5+4\cdot (-3)-7=46\ne 0\\\\2x-y-1=2\cdot 5-(-3)-1=12\ne 0

Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.

BN⊥AC  ⇒  направляющий вектор для АС равен нормальному вектору для BN:  \vec{s}_{AC}=(2,-1) .

Точка А(5,-3)∈АС и уравнение АС имеет вид:

\frac{x-5}{2}=\frac{y+3}{-1}\; \; ,\; \; -x+5=2y+6\; \; ,\; \; \underline {x+2y+1=0}

CM⊥AB  ⇒  направляющий вектор для АВ равен нормальному вектору для CМ:  \vec{s}_{AB}=(13,4)  .

Точка А(5,-3)∈АВ и уравнение АВ имеет вид:

\frac{x-5}{13}=\frac{y+3}{4}\; \; ,\; \; 4x-20=13y+39\; \; ,\; \; \underline {4x-13y-59=0}

Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .

B:\; \left \{ {{4x-13y=59\qquad } \atop {2x-y=1\, |\cdot (-2)}} \right.\oplus \left \{ {{-11y=57} \atop {2x=y+1}} \right. \; \; \left \{ {{y=-\frac{57}{11}} \atop {2x=-\frac{46}{11}}} \right.\; \; \left \{ {{y-\frac{57}{11}} \atop {x=-\frac{23}{11}}} \right. \; \; B(-\frac{23}{11}\, ,\, -\frac{57}{11})\\\\\\C:\; \left \{ {{x+2y=-1\, |\cdot (-2)} \atop {13x+4y=7\qquad }} \right.\oplus \left \{ {{2y=-x-1} \atop {11x=9\quad }} \right. \; \; \left \{ {{2y=-\frac{20}{11}} \atop {x=\frac{9}{11}}} \right.\; \left \{ {{y=-\frac{10}{11}} \atop {x=\frac{9}{11}}} \right.\; \; C(\frac{9}{11}\, ,\, -\frac{10}{11})


Даны уравнения прямых, содержащих высоты треугольника, и координаты одной из вершин треугольника. вы

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Одна сторона треугольника равна 4 см., а сумма двух других 8см.найдите неизвестные стороны треугольника если длина каждой из них равна целому числу сантиметров
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

missimeri
Aleksandrovich1075
ambstroy
Guru-tailor
zaretskaya37
emartynova25
alekseev13602
amaraks67
skorpion7228528
irinalav2705745
sbn07373
Olga-Lev1160
Теплова
Salko17
vps1050