1. Написать уравнение окружности в общем виде, изобразить на координатной плоскости.
2. Выполнив построение, выясните взаимное расположение окружности и прямой, заданных уравнениями:
у=(х+2)2+(у+1) 2=4 ,у= –х+1 .В ответе написать пересекаются, не пересекаются, касаются
3. Написать окружности прямой, с центром в точке О(1;1) и радиусом 2 см.
Объяснение:
1.Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.
2. (х+2)²+(у+1) ²=4 окружность с центром в точке (-2;-1) , радиусом 2
у= –х+1
(х+2)²+(-х+1+1) ²=4
(х+2)²+(2-х) ²=4
х²+4х+4+4-4х+х²=4
2х²=-8 или х²=-4 корней нет ⇒ не пересекаются.
3) (x – 1)²+ (y – 1)² =4
1. ABCD-трапеция:AB=CD.
BC=5см;AC=17см;AB=10см.
Найти:S.
Решение:1.Рассмотрим ABCD-трапецию:AB=CD.
Проведем BB1 и CC1 -высоты.
AB1=AC1=(AD-B1C1)/2=(17-5)/2=6(см).
2.Рассмотрим ΔABB1:<B1=90градусов.
По те-ме Пифагора:BB1²=AB²-AB1²=10²-6²=100-36=64.
BB1=8см.
3.S=((BC+AD)/2)*BB1=((5+17)/2)*8=88(см²).
ответ:88 см². (рисунок сделаешь сам, он не сложный)
2. Параллелограмм АВСД, АК=7, КД=15, АД=7+15=22, треугольник АВК прямоугольный равнобедренный, уголВ=90-уголА=90-45=45, угол А=угол АВК, АК=ВК=7, площадь АВСД=АД*ВК=22*7=154
трапеция АВСД, ВС=13, АД=27, СД=10, уголД=30, проводим высоту СН на АД, треугольник НСД прямоугольный, СН - высота трапеции=1/2СД=10/2=5 (катет лежит против угла 30=1/2 гипотенузы), Площадь АВСД=(ВС+АД)*СН/2=(13+27)*5/2=100
3. МК=МТ+КТ=5+10=15, периметр МКР=МК+КР+МР=15+9+12=36, полупериметр (р)=периметр/2=36/2=18, площадь МКР=корень(р*(р-МК)*(р-КР)*(р-МР))=корень(18*3*9*6)=54, проводим высоту РН на МК, РН=2*площадь МКР/МК=2*54/15=7,2, площадь МТР=1/2*МТ*РН=1/2*5*7,2=18, площадь КРТ=54-18=36
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Высота bd треугольника abc делит сторону ac на отрезки ad и dc.bc=6см, угол а=30°, угол cbd=45°.найти отрезок ad.
хрень какая-то вроде всё верно. и не забудь ответ дописать)