AO = OD - радиус основания KO - высота AD - диаметр основания
Дано:
BD = 12 (см) ∠ D = 45
Найти: V
Решение:
1. С прямоугольного треугольника АВД (∠ВАД = 90), определяем диаметр основания АД
Косинус угла Д это отношение прилежащего катета к гипотенузе
Cos ∠D = AD/BD
AD = cos 45 * BD = √2/2 * 12 = 6√2 (см).
А радиус основания равен половине диаметру
AO = AD/2 = 6√2 / 2 = 3√2 (см),
2. Определяем высоту KO
Sin ∠ D = OK/BD
OK = sin45 * BD = √2/2 * 12 = 6√2 (см)
4. Определяем объём
V = πr²h = π * (3√2)² * 6√2 = 108π√2 (см³).
ответ: 108π√2 (см³).
КириллЕгорова1906
19.03.2021
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Найдем площадь: S= ответ:54
Anna572
19.03.2021
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Диагональ осевого сечения цилиндра равна 12 см и наклонена к плоскости основания под углом 30 градусов вычислите площадь полного основания и объем
AO = OD - радиус основания
KO - высота
AD - диаметр основания
Дано:
BD = 12 (см)
∠ D = 45
Найти: V
Решение:
1. С прямоугольного треугольника АВД (∠ВАД = 90), определяем диаметр основания АД
Косинус угла Д это отношение прилежащего катета к гипотенузе
Cos ∠D = AD/BD
AD = cos 45 * BD = √2/2 * 12 = 6√2 (см).
А радиус основания равен половине диаметру
AO = AD/2 = 6√2 / 2 = 3√2 (см),
2. Определяем высоту KO
Sin ∠ D = OK/BD
OK = sin45 * BD = √2/2 * 12 = 6√2 (см)
4. Определяем объём
V = πr²h = π * (3√2)² * 6√2 = 108π√2 (см³).
ответ: 108π√2 (см³).