sapelnikovk-74
?>

Вычисли площадь квадрата klmn, если диагональ квадрата равна 32 см.

Геометрия

Ответы

iburejko7
S = d²/2, где d - диагональ квадрата.
S = 32²:2 = 1024:2 = 512см²
art-03857

Высоты треугольника пересекаются в одной точке.

Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.

Уравнение прямой АВ найдем по формуле:

(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или

(X+4)/2=(Y-0)/-2 - каноническое уравнение =>

y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.

Условие перпендикулярности прямых: k1=-1/k => k1=1.

Тогда уравнение перпендикуляра к стороне АВ из вершины С

найдем по формуле:

Y-Yс=k1(X-Xс) или Y-2=X-2 =>

y=х (1) - это уравнение перпендикуляра СС1.

Уравнение прямой АС:

(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или

(X+4)/6=(Y-0)/2 - каноническое уравнение =>

y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.

Условие перпендикулярности прямых: k1=-1/k => k1 = -3.

Тогда уравнение перпендикуляра к стороне АС из вершины В

найдем по формуле:

Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>

y=-3х-8 (2)- это уравнение перпендикуляра BB1.

Точка пересечения перпендикуляров имеет координаты:

х=-3х - 8 (подставили (1) в (2)) => х = -2.

Тогда y = -2.

ответ: точка пересечения высот совпадает с вершиной В(-2;-2)

треугольника, то есть треугольник прямоугольный с <B=90°.


Для проверки найдем длины сторон треугольника:

АВ=√(((-2-(-4))²+(-2)²) = 2√2.

ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.

АС=√(((2-(-4))²+2²) = 2√10.

АВ²+ВС² = 40; АС² = 40.

По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.

kchapurina591

Рассмотрим равнобедренный треугольник ABC с боковыми сторонами AB = BC и основанием AC.

Опустим из вершины B высоту BH на основание AC.

Рассмотрим треугольники ABH и BCH.

Так как BH - высота, то углы BHA = BHC = 90°, т.е. треугольники ABH и BCH - прямоугольные.

Заметим, что AB = BC, т.е. гипотенузы треугольников ABH и BCH равны и у них общий катет BH.

Следовательно, треугольники ABH и BCH конгруэнтны по гипотенузе и катету.

Отсюда вытекает, что AH = CH, а это означает, что BH является медианой.

Также из равенства треугольников ABH и BCH имеем, что углы ABH = CBH.

Следовательно, BH является биссектрисой угла ABC.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычисли площадь квадрата klmn, если диагональ квадрата равна 32 см.
Ваше имя (никнейм)*
Email*
Комментарий*