Объяснение:
Тангенс угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
а)
tg∠A = BC / AC = 3/6 = 1/2
ctg∠A = AC / BC = 6/3 = 2
б)
tg∠B = AC / BC = 4/6 = 2/3
ctg∠B = BC / AC = 6/4 = 3/2
№2
Тангенс угла в прямоугольном треугольнике -это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
tg(a-β)=tga-tgβ/1+tga×tgβ; tg(a+β)= tga+tgβ/1-tga×tgβ
a)tg ∠BAC = tg(∠BAD-∠CAD) =tg∠BAD- tg-∠CAD/1+tg∠BAD×tg∠CAD=∠BAD= BK/AK=5/5=1; tg∠CAD= CD/AD=3/6=1/2=1-1/2/1+1×1/2=1/2/3/2=1/3
ctg∠BAD=1/tg∠BAD=1/1/3
b) tg∠ABC=tg(∠CBD+∠KBA) =tg∠CBD+tg∠KBA/1-tg∠CBD×tg∠KBA=tg∠CBD=CD/BD=1/3; tg∠KBA=AK/BK=5/5=1=1/3+1/1-1×1/3=4/3/2/3=4/2=2
Поделитесь своими знаниями, ответьте на вопрос:
Для треугольника abc с заданными вершинами a(-5, 0) b(-8, 4) c(-17, -5) найти 1)уравнение стороны ac, 2)уравнение высоты bh.3)уравнение прямой, проходящей через вершину b параллельно прямой ac.
1) уравнение стороны AC
АС : (Х-Ха)/(Хс-Ха) = (У-Уа)/(Ус-Уа).
АС : -5 Х + 12 У - 25 = 0,
5 Х - 12 У + 25 = 0,
у = 0,41667 х + 2,08333.
2) уравнение высоты BH.
ВН: (Х-Хв)/(Ус-Уа) = (У-Ув)/(Ха-Хс).
ВН: 12 Х + 5 У + 76 = 0,
у = -2.4 х - 15,2.
3) уравнение прямой,проходящей через вершину B параллельно прямой AC.
В || АC: (Х-Хв)/(Хс-Ха) = (У-Ув)/(Ус-Уа).
В || АC: -5 Х + 12 У - 88 = 0,
5 Х - 12 У + 88 = 0.
у = 0,41667 х + 7,33333.