Я попробую.
Сначала для удобства запишем то, что имеем:
Дано: ABC треугольник - равнобедренный, где:
АС это основание
АВ, BC это боковые стороны
АC будет больше чем АВ на 2 см;
АВ + ВС = АС + 3 cм
Найти: стороны треугольника.
Будем рассуждать так: AB = ВС т.к. у равнобедренного треугольника боковые стороны равны друг другу и поэтому находить будем только АВ, что и понятно.
У нас выходит:
2АВ = АС + 3;
ВС = АС + 2 см;
2АВ = АС + 2 + 3
АВ = 5 см
ВС = 5 см
АС = 7 см
Задача решена.
Дано: ∠А = ∠D = 60°, AB = CD = 12 см, AD = 18 см.
Найти: BC, MN (средняя линия)
Проведём высоты BH и CP. Рассмотрим треугольник ABH:
∠А = 60° по условию, ∠АВН = 90°; по теореме о сумме углов треугольника получаем: ∠АВН = 90° - 60° = 30°. АН = 0,5 АВ = 6 см, как катет прямоугольного треугольника, лежащий против угла в 30°. Так как трапеция ABCD - равнобедренная, то PD = AH = 6 см.
НР = AD - AH - PD = 18 - 12 = 6 см. BC = HP = 6 см, как противоположные стороны прямоугольника.
Средняя линяя трапеции равна полу сумме оснований ⇒ MN = (ВС + НР)/2 = (18 + 6)/2 = 12 см.
ответ: MN = 12 см, BC = 6 см.
Поделитесь своими знаниями, ответьте на вопрос:
основание больше боковой стороны на 2 сантиметра, значит оно (х+2) см
Т.к. основание (х+2) меньше суммы боковых сторон (х+х) см на 3 сантиметра, составим уравнение
х+х-(х+2)=3
2х-х-2=3
х-2=3
х=3+2
х=5
боковая сторона 5 см
основание 5+2=7 см
Стороны треугольника: 5см;5см;7 см