теорема 1. признак параллельности прямых
если внутренние накрест лежащие углы равны, то прямые параллельны.
если соответственные углы равны, то прямые параллельны.если сумма внутренних односторонних углов равна 180, то прямые параллельны.следствие: две прямые, перпендикулярные третьей, параллельны. свойства параллельных прямыхтеорема 2. две прямые, параллельные третьей, параллельны.
это свойство называется транзитивностью параллельности прямых.
теорема 3. через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
теорема 4. если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.
на основании этой теоремы легко обосновываются следующие свойства.
если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180. следствие если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.По теореме о трех перпендикулярах отрезок ОВ - проекция наклонной АВ, перпендикулярной прямой ВС (катеты). Следовательно, двугранный угол АВСО измеряется линейным углом АВО по определению и равен 45° (дано). Треугольник АВО прямоугольный и равнобедренный. Катеты АО=ОВ=2см, а гипотенуза АВ=2√2 см. В прямоугольном треугольнике АВС по Пифагору АС=√(АВ² +ВС²) = √(8+4) = 2√3см. В прямоугольном треугольнике АОС синус угла АСО (искомый угол, так как это угол между наклонной АС и плоскостью α по определению) равен отношению АО/АС = 2/(2√3) = √3/3. По таблице - это угол, равный 35,2°.
ответ: 35,2°.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике высота проведенная к основанию равна 8 см, боковая сторона равна 10 см.найти периметр и площадь треугольникапо теореме пифагора)
По теореме Пифагора высота равна = корень из (10^2 - 6^2) = корень из (100 - 36) = корень из 64 = 8 см
б) S = 1/2 a h = 1/2 * 12 * 8 = 6*8 = 48 см^2
в) P = a + b + c
a = b
P = 2a + c = 2*10 + 12 = 20 + 12 = 32