Жил-был на свете треугольник. Он был молод и очень одинок. Он мало знал о том мире, где жил. И решил треугольник отправиться в путешествие, чтобы найти друзей и узнать побольше об окружающем мире.
Шел он, шел, долго ли, коротко ли, и вдруг увидел детей, играющих в мячик. Пригляделся - да это же треугольники! Подбежал к ним и заговорил:
- Привет, братья-треугольники!
- Привет, треугольник. Что ж ты такой радостный?
- А как же? Собратьев встретил! Смотрите, ведь мы с вами одинаковые!
- Экий ты глупый, треугольник! Какие же мы одинаковые? Неужели ты не знаешь первого правила равенства треугольников? - спросил у него второй треугольничек.
- Какое еще первое правило равенства? - удивленно спросил молодой треугольник.
- Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то они равны. Посмотри, у нас с треугольничком и стороны меньше твоих, и углы. Мы совсем неодинаковые.
Расстроился треугольник, пошел дальше. Идет он, идет, и видит: сидит на скамейке еще один треугольник, старый-престарый. Подошел треугольник к старику и говорит:
- Привет, дедушка. Неужели и ты от меня чем-то отличаешься?
- Ну, конечно, милок! Ты посмотри: я треугольник равнобедренный, а ты - нет.
- Что ты такое говоришь, дедушка? Равнобедренный, нет, что за глупости?
- Экий ты неразумный еще! Смотри, у тебя каждая сторона немножко больше другой, а у меня - все равны. Мы с тобой неодинаковые.
Снова расстроился треугольник. Пустился в путь снова. Шел он долго ли, коротко ли. Устал, присел на камешек отдохнуть. Видит, идет мимо него треугольник с котомкой. Обернулся на наш треугольник, подошел к нему, сел рядом и молчит. Треугольник спрашивает у незнакомца:
- Куда путь держишь, брат-треугольник?
- Никуда. Путешествую, пытаюсь мир познать, друзей найти. И все какие-то разные.
- Я тоже. Измеримся что ли, для интереса? Вдруг, мы одинаковые?
И решили они попробовать, все равно делать нечего. Нашел где-то треугольник линейку и измерил все стороны и углы между ними. И оказалось так, что все стороны и углы равны у этих двух треугольников. И обрадовались они безмерно. И решили они путешествовать вместе по разным уголкам мира, но не ссориться, ведь они равны. И жили они потом долго и счастливо.
трапеция;
∠DAC = 63˚;
∠ACJ = 27˚;
D₂K = 10;
IJ = 12.
D₂К соединяет середины отрезков DE и AC.
IJ соединяет середины отрезков AD и EC.
Найти:(AC * DE) * 1/2 = ?
Решение:Пусть дана произвольная трапеция ADEC, где AC - большее основание (сумма углов при большем из оснований 63° + 27° = 90°), а DE - меньшее соответственно.
Продлим боковые стороны нашей произвольной трапеции до их пересечения. Обозначим пересечение точкой В.
Нетрудно заметить, что △ABC - прямоугольный (поскольку можно увидеть, что ∠DAC + ∠ACJ = 63˚ + 27° = 90° - сумма острых углов в прямоугольном треугольнике => ∠АВС прямой и равен 90°).
Обозначим середину большего из оснований произвольной трапеции, допустим, точкой К. Тогда из свойства, мы можем утверждать, что ВК - медиана прямоугольного △ABC.
Мы знаем, что медиана всегда делит отрезок, параллельный тому, к которому проведена медиана, на два равных, т.е. в данной ситуации она оба основания нашей трапеции делит пополам так, что AK = KC и DD₂ = D₂E.
Исходя из этих объяснений, запишем формулу для серединного отрезка к противоположным сторонам трапеции IJ.
IJ = 1/2 * (AC + DE).
D₂K = ВК - ВD₂. Известно, что ВК и ВD₂ медианы, проведённые из вершины прямого угла, которые по свойству медианы прямоугольного треугольника равны половине гипотенузы. То есть BK = AC * 1/2 (по свойству), соответственно BD₂ = DE * 1/2, откуда D₂K = 1/2 * (AC - DE).
Исходя из этого, мы можем сказать, что:
AC = D₂K + IJ = 10 + 12 = 22; DE = IJ - D₂K = 12 - 10 = 2.
Теперь остается найти полупроизведение этих оснований.
(AC * DE) * 1/2 = (22 * 2) * 1/2 = 44 * 1/2 = 44/2 = 22.
ответ: (AC * DE) * 1/2 = 22.Поделитесь своими знаниями, ответьте на вопрос:
Дано: a=15; угол b=35 градусов; угол c=64 градусов найти: угро a; b; c