Объяснение:
№3
Обозначим вершины призмы АВСА₁В₁С₁. Так как призма правильная, то в её основании лежит равносторонний треугольник и все её боковые грани равны. Поскольку площадь основания равна площади одной боковой грани, то площади всех граней призмы равны и так как их 5 то площадь каждой грани составит:
Sгр.=Sосн.=180√3÷5=36√3(см²)
Найдём сторону основания АВС через формулу площади равностороннего треугольника:
где а – сторона основания, перемножим крест накрест:
а²√3=4S
a²√3=4×36√3
a²√3=144√3
a²=144√3÷√3
a²=144
a=√144
a=12(см) – сторона основания.
Поскольку каждая грань содержит сторону сторону основания найдём вторую сторону грани, являющейся высотой призмы:
АА₁=ВВ₁=СС₁=ДД₁=Sгр.÷12=36√3÷12=
=3√3(см)
V=Sосн×АА₁=36√3×3√3=108×3=324(см³)
ОТВЕТ: V=324(см³)
№4
Обозначим вершины призмы АВСДА₁В₁С₁Д₁
Самой большой диагональю призмы является АС₁.
Площадь параллелограмма (основания) вычисляется по формуле:
Sосн=ВС×СД×sinC=6×3×sin60°=18×√3/2=
=9√3(см²).
Проведём в основании диагональ АС. Сумма углов основания, прилегщих к одной стороне равна 180°, поэтому ∠Д=∠В=180–∠С=180–60°=120°
Найдём по теореме косинусов диагональ АС:
АС²=АВ²+ВС²–2×АВ×ВС×cos120°=
=3²+6²–2×3×6×(–1/2)=9+36+18=63
AC=√63=3√7(см)
В ∆АС₁С найдём С₁С через тангенс угла. Тангенс угла – это отношение противолежащего катета к
прилежащему:
tgC₁AC=CC₁/AC
CC₁=tgC₁AC×AC=tg30°×3√7=(√3/3)×3√7=
=√3×√7=√21(см)
V=Sосн×С₁С=9√3×√21=9√63=9×3√7=
=27√7(см³)
ОТВЕТ: V=27√7(см³)
1) Модуль вектора CP
2) Модуль вектора СМ
модуль вектора СР=√8; модуль вектора СМ=√40
Объяснение:
Прикрепил фото, где есть формула для решения.
Для того чтобы в формулу внести значения, сначала необходимо вычесть из последней точки координат начальную точку.
То есть:
- В первом действии мы искали модуль вектора СР.
Нам известна точка С(1;1) и точка Р(3;-1).
Точка С - начальная, а точка Р - конечная для данного вектора.
Из второго х вычитаем первый, получается 3 - 1 = 2. Тоже самое делаем с координатой у, значит, будет так: - 1 - 1 = - 2
Теперь, смотрим в формулу и вставляем туда то, что посчитали. Вместо х ставим 2, а вместо у ставим (-2). Считаем и получаем ответ
В формуле есть координаты x, y, z. Нам неизвестны координаты z, поэтому считаем только x и y
Поделитесь своими знаниями, ответьте на вопрос:
Найдите уравнение прямой проходящей через точки a ( 1; 3) и b(-2; -3)
система ( с):
а: а+3б+ с = 0 вычитаем
в: -2а-3б+с= 0 получается
-а=0, значит
3б+с=0
с=-3б , подставляем и получаем
3б-3б=0,
0=0
следовательно прямая не проходит через две точки и прямая не имеет уравнения