Все внутренние углы треугольника АОВ равны между собой, следовательно, ΔАОВ - равносторонний, и радиус окружности
ОА = ОВ = AB = R = 15.
Pavlov447
07.03.2021
равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Нарисуйте четыре куба у себя в тетради.на каждом из них укажите обе части на которые распадётся куб если его разрезать так как на рисунке 14 а-в
15. 138°; 16. 15;
Объяснение:
15.
Пусть х - градусная мера угла, обозначенного одной дугой, тогда развёрнутый угол, равный 180°, состоит из угла, равного 96°. и двух углов по х°.
Найдём угол х:
180° = 96° + 2х
2х = 84°
х = 42²
Угол АОВ равен вертикальному углу, состоящему из угла 96° и угла х = 42°, поэтому
∠АОВ = 96° + 42° = 138°.
16.
На рисунке ОА = ОВ = R - радиус окружности.
Следовательно, Δ АОВ - равнобедренный и
∠А = ∠В = 0,5 · (180° - ∠АОВ) = 0,5 · (180° - 60°) = 60°.
Все внутренние углы треугольника АОВ равны между собой, следовательно, ΔАОВ - равносторонний, и радиус окружности
ОА = ОВ = AB = R = 15.