Пусть задан отрезок АВ и угол с вершиной М.
С циркуля и линейки нужно разделить отрезок АВ пополам: из А и В как из центра провести полуокружности радиусом больше половины отрезка. Точки их пересечения по обе стороны отрезка соединить прямой. Эта прямая делит отрезок на два равных АО=ВО.
Из вершины М данного угла, как из центра, циркулем проводим окружность радиусом, равным ОВ - половине заданного отрезка.
Она пересечет стороны угла в точках С и К на равном расстоянии от вершины М. Это расстояние равно половине отрезка АВ.
МС=МК=ОВ. Построение закончено.
Соединим середины ребер, лежащих в одной грани; получим, что каждый из отрезков будет средней линией соответствующего треугольника.
поэтому
поэтому
Значит, 4-угольник MNPQ - параллелограмм по определению, его диагонали QN и МР пересекаются в т. О и делятся в ней пополам. Отрезки QN и MP соединяют середины противоположных ребер тетраэдра.
Повторяя проведенные выше рассуждения, заключаем, что RS и QN тоже пересекаются в точке О и делятся ей пополам.
Таким образом, все три отрезка: RS, QN, MP - пересекаются в т. О и делятся в ней пополам.
Поделитесь своими знаниями, ответьте на вопрос:
AH=1/2*8=4 см
BH=√AB²-AH²=√64-16=√48=4√3 см
AH=HD=4 см ⇒ BC = 4 см (из сво-ств прям трап)
AD=2*4=8 см
S=1/2*(a+b)*h = 1/2*(4+8)*4√3 = 12*2√3=24√3 см²