Вравнобедренной трапеции диагонали пересекаются под углом 60градусов. найдите диагонали и нижнее основание трапеции, если верхнее основание 3м, а боковая сторона трапеции 4м. оч надо
Проведём высоту КМ через точку О пересечения диагоналей. Угол ВОС равен 180°-60, = 120°. Угол ВОК = 120°/2 = 60°, а угол ОВК = 90°-60° = 30°. Обозначим ОК = х, а ВО = 2х. (2х)² = (3/2)²+х², 4х²-х² = 9/4, 12х² = 9, х = √(9/12) = √(3/4) = √3/2. ВО = 2*(√3/2) = √3 (найдена часть диагонали). В треугольнике АВО известны 2 стороны и один угол. По теореме синусов находим угол ВАО. sin BAO = (BO/AB)*sin 60° = (√3/4)*(√3/2) = 3/8. Угол ВАО = arc sin(3/8) = 0,3843968 радиан = 22,024313°. Находим угол АВО = 180-60-22,024303 = 97,97569°. Вторая часть диагонали равна: АО = АВ*(sinABO/sinBOA) = 4*( 0.990327/(√3/2)) = 4,574124647. Диагональ равна сумме ВО и АО: АС = √3+ 4,574124647 = 5,440150051. Нижнее основание АД = 2*АО*cos30° = 2*4,574124647*(√3/2) = 7,922616289.
cheshirsky-kot
23.06.2022
КАВСД-пирамида, К-вершина, АВСД прямоугольник АВ=СД=5, О-пересечение диагоналей, КО-высота пирамиды, КА=КВ=КС=КД=13, диагонали АС=ВД и вточкен перресечения делятся пополам, АО=ОС=ВО=ОД, уголСОД=60, треугольник СОД равносторонний, уголОДС=уголОСД=(180-уголСОД)/2=(180-60)/2=60, все углы=60, СД=ОД=ОС=5, ВД=АС=ОД*2=5*2=10, треугольник КОС прямоугольный, КО=корень(КС в квадрате-ОС в квадрате)=корень(169-25)=12, площадьАВСД=АС в квадрате*sin СОД/2=10*10*(корень3/2)/2=25*корень3, объем=1/3*площадьАВСД*КО=1/3*25*корень3*12=100*корень3
Advantage9111
23.06.2022
Найлем для начало стороны AB=√(8-4)^2+(2-6)^2 =√ 16 +16=2√8CD=√(-2-4)^2+(-1+3)^2 =√36+4 =√40 BC=√(4-8)^2+(-3-2)^2=√16+25=√41AD=√(-2-4)^2+(-1-6)^2=√36+49=√85 на рисунке можно видеть что это трапеция выходит, можно раздлить эту трапецию на два треугольника затем найти площадь каждой и суммировать Площадь треугольника S=ab/2*sinaнайдем угол между АВ и AD через скалярAB {4;-4}AD{-6;-7}cosa=4*-6+ 4*7 / √32*85 = 4/√2720теперь sina=√1-16/2720=52/√2720теперь площадь S= 52/√2720 * √2720/2 = 26 теперь площадь другого треугольника опять угол B (8; 2), C (4; -3), D (-2; -1) ВС={-4;-5} CD={-6;2} cosa= 24-10/√1640 = 10/√1640 sina = √1-100/1640 = √1540/1640 S=√41*40/2 * √1540/1640 =√1540/2 = √385 S=√385+26 площадь искомая
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренной трапеции диагонали пересекаются под углом 60градусов. найдите диагонали и нижнее основание трапеции, если верхнее основание 3м, а боковая сторона трапеции 4м. оч надо
Угол ВОС равен 180°-60, = 120°.
Угол ВОК = 120°/2 = 60°, а угол ОВК = 90°-60° = 30°.
Обозначим ОК = х, а ВО = 2х.
(2х)² = (3/2)²+х²,
4х²-х² = 9/4,
12х² = 9,
х = √(9/12) = √(3/4) = √3/2.
ВО = 2*(√3/2) = √3 (найдена часть диагонали).
В треугольнике АВО известны 2 стороны и один угол.
По теореме синусов находим угол ВАО.
sin BAO = (BO/AB)*sin 60° = (√3/4)*(√3/2) = 3/8.
Угол ВАО = arc sin(3/8) = 0,3843968 радиан = 22,024313°.
Находим угол АВО = 180-60-22,024303 = 97,97569°.
Вторая часть диагонали равна:
АО = АВ*(sinABO/sinBOA) = 4*( 0.990327/(√3/2)) = 4,574124647.
Диагональ равна сумме ВО и АО:
АС = √3+ 4,574124647 = 5,440150051.
Нижнее основание АД = 2*АО*cos30° = 2*4,574124647*(√3/2) = 7,922616289.