Назовем трапецию АВСD. АВ=17 см, ВС=16 см, СD=25 см, AD=44 см
Площадь трапеции равна произведению её высоты на полусумму оснований. Основания даны, высоту надо найти.
Один из решения:
Проведем СМ параллельно ВА. СМ=17 см (или ВК параллельно СD. Тогда ВК=25).
Получим треугольник, в котором известны три стороны: 17, 25 и 28 см.
По ф. Герона площадь этого треугольника равна 210 см².
Высота СН является и высотой трапеции.
S(∆ MCD)=CH•MD:2⇒
CH=2•S:MD=420:28=15 см
S(ABCD)=CH•(BC+AD):2=15•30=450 см²
Поделитесь своими знаниями, ответьте на вопрос:
Биссектрисса угла при основании равнобедренного треугольника делит противолежащую сторону на части длинной 10 и 8 см . найдите длинну основания треугольника и его периметр
вторая тоже будет 18
пусть основание - х, тогда
1 случай
18/10=х/8
х=8*18/10=144/10=14,4 см
Р=18+18+14,4=50,4см
2 случай
18/8=х/10
х=10*18/8=22,5 см
Р=18+18+22,5=58,5 см