Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника равны 17 м, 10 м, 9 м. вычисли наибольшую высоту этого треугольника. наибольшая высота равна
p = (17 см + 10 см + 9 см)/2 = 18 см.
Найдём площадь по формуле Герона:
S = √18(18 - 17)(18 - 10)(18 - 9) = √18•1•8•9 = 36 см².
Большая из трёх высот будет опущена на меньшую из трёх сторон треугольника.
Площадь треугольника равна:
S = 1/2ah, где a - сторона, h - высотач опушённая на эту сторону.
Отсюда h = 2S/a
h = 72 см²/9 см = 8 см.
ответ: 8 см.