Три РАВНЫХ по площади круга могут касаться друг друга только внешним образом. Окружность, которая ВНУТРЕННИМ образом касается трех указанных - это окружность, являющаяся ВНЕШНЕЙ для трех остальных. Рассмотрим треугольник АВС. Это равносторонний треугольник со стороной, равной 2r. Высота этого треугольника h равна r√3. Тогда отрезок ОА=(2/3)*r√3, а радиус искомой окружности равен ОА+r или R=(2/3)*r(√3+1)= r(2√3+3)/3. Так как r=√(S/π), то R=r((2/3)*(√3+1)) или R=√(S/π)*((2√3+3)/3). R²=(S/π)*((2√3+3)/3)² или R²=(S/π)*(12+12√3+9)/9=(S/π)*((7+4√3)/3). Площадь искомого круга будет Sи=πR². Тогда Sи=S*(7+4√3)/3.
Vorotko814
23.11.2020
Рассмотрим равностор треуг образованный центрами этих кругов. его сторона равна двум радиусам кругов(2r). его медианы пересекаются и делятся как 1/2 найдём мед , пусть её длина x по т пиф x^2=(2r)^2- r^2 x^2=4r^2-r^2 x^2=3r^2 x=r корней из 3 найдём радиус маленького круга r=2/3x+r=2/3rкорней из 3 +r= 2r/3корней из 3 +r найдём площ этого круга s=пи(2r/3корней из 3 +r)^2=пи r^2(2+3корней из 3)/3корней из 3)^2 найдём r через s тк s=пи r^2, то r^2=(s/пи) s=s(7-4корней из 3)/3 ответ: s(7-4 корней из 3)/3
irnik65
23.11.2020
1. сечение, проходящее через вершины B, B1, D - это диагональное сечение BDD1. Его площадь равна BD*BB1. Из прямоугольного треугольника ABD найдем BD: BD=17, тогда площадь сечения равна 17*21=357. 2. Диагональ правильной четырехугольной призмы BD1 наклонена к плоскости основания под углом 30, поэтому угол между диагональю призмы BD1 и диагональю основания B1D1 равен 30. Из полученного треугольника найдем диагональ призмы: 3. площадь боковой поверхности правильной шестиугольной призмы равна Р*Н: S=6*2*5=60. 4. Площадь основания равна 1/2*6*8= 24. Площадь боковой поверхности равна 288 - 2*24= 240. Площадь боковой поверхности равна Р*Н. Гипотенуза прямоугольного треугольника равна 10. Высота призмы равна 288/(6+8+10)=12.
Марюк-Мубариз
23.11.2020
Основание АD трапеции ABCD лежит в плоскости α .Через точки B и C проведены параллельные прямые , пересекающие плоскость α в точках E и F соответственно. а) каково взаимное расположение прямых EF и AB? б) Чему равен угол между прямыми EF и AB, если ABC = 150°? _____________ а) АД лежит в плоскости альфа. ВС параллельна АD, след, ВС параллельна плоскости α. По условию CF|| BE. Отрезки параллельных прямых, заключенные между плоскостью и параллельной ей прямой, равны. ВЕ параллельна и равна СF. Следовательно, СВЕF параллелограмм, ⇒ ЕF равна и параллельна ВС Две прямые, параллельные третьей прямой, параллельны между собой. АD|| ВС, ЕF || ВС след ЕF || АD. ЕF лежит в плоскости α, ВА пересекает ее в точке, не принадлежащей ЕF. Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются. ⇒ прямые EF и AB - скрещивающиеся. Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным. . Сумма углов при боковой стороне трапеции 180°. Угол ВАD=180º-150º=30° Проведем в плоскости ВЕF прямую ЕК, параллельную АВ. Т.к. ЕF|| АD, а ЕК || АВ, угол KEF=углу ВАD и равен 30° ------------- Если ВЕ и СF проведены в плоскости трапеции АВСD, ЕF будет лежать на АD и в этом случае EF и АВ лежат в одной плоскости и не параллельны. В этом случае АВ и EF пересекаются, и угол между ними равен 30º
Рассмотрим треугольник АВС. Это равносторонний треугольник со стороной, равной 2r. Высота этого треугольника h равна r√3.
Тогда отрезок ОА=(2/3)*r√3, а радиус искомой окружности равен ОА+r или
R=(2/3)*r(√3+1)= r(2√3+3)/3.
Так как r=√(S/π), то R=r((2/3)*(√3+1)) или R=√(S/π)*((2√3+3)/3).
R²=(S/π)*((2√3+3)/3)² или R²=(S/π)*(12+12√3+9)/9=(S/π)*((7+4√3)/3).
Площадь искомого круга будет Sи=πR².
Тогда Sи=S*(7+4√3)/3.