В равнобедренный треугольник АВС , АВ=ВС=15 , АС=24, вписана окружность (О; r). Найдите r.
Объяснение:
1)Пусть ВН ⊥АС. Центр вписанной окружности О лежит в точке пересечения биссектрис. В равнобедренном треугольнике биссектриса совпадает с высотой ⇒поэтому О лежит на высоте ВН.
АН=42 :2=12( т.к. ВН и медиана ) . Будем искать r из ΔКВО.
2) ΔАВН-прямоугольный, по т. Пифагора ВН=√(15²-12²)=9. Тогда отрезок ВО можно выразить так ВО=9-r.
По свойству отрезков касательных АН=АК=12⇒КВ=15-12=3.
3) ΔКВО-прямоугольный , по свойству радиуса , проведенного в точку касания . По т. Пифагора ВО²=ОК²+КВ²
(9-r)²=r²+3² ,81-18r+r²=r²+9 ,18r=72 , r=4 .
Діагоналі ромба в точці перетину діляться навпіл. З цього випливає, що ВО=ДО=ВД:2=24:12=12 см
Потім з трикутника АОД (а взагалі байдуже з якого - всі ті 4 трикутника рівні, вони повністю однакові) за теоремою Піфагора шукаємо АО. А оця сторона АО є половиною іншої діагоналі. Знайшли АО=СО=5 см. Тоді АС=2АО=2*5=10 см
Формула площі ромба: добуток діагоналів розділити на 2. В нас є дві діагоналі: ВД (за умовою)=24 см, АС=10 см (тільки що знайшли). Перемножуємо їх і ділимо на 2. Вийшло (24*10):2=240:2=120 (см²)
А для периметра тобі взагалі треба тільки одна сторона, а вона за умовою 13. 13+13+13+13=52 см (або ж 13*4=52 см)
Поделитесь своими знаниями, ответьте на вопрос: