northwest7745
?>

Сформулируйте теорему о неравенстве треугольника и теорему о соотношении между сторонами и углами треугольника.

Геометрия

Ответы

nikiforovako76
1)Теорема о неравенстве треугольника:
Каждая сторона треугольника меньше суммы двух других сторон.
Следствие:
Для любых трех точек А, В и С, не лежащих на одной прямой справедливы неравенства: АВ<АС+ВС, АС<АВ+ВС, ВС<АС+АВ.
Теорема о соотношении между сторонами и углами треугольника:
В треугольнике:1) Напротив большего угла лежит большая сторона и обратно 2) напротив большей стороны лежит больший угол.
Следствия:
1)В прямоугольном треугольнике гипотенуза всегда больше катета
2)Если в треугольнике два угла равны, то он равнобедренный(признак равнобедренного треугольника).
artem032100
1  В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. 
Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d,  уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°.
2  В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD (\angle1= \angle2=30к; \angle1= \angle3; \Rightarrow \angle2= \angle3=30к;DH \perp CPDH= \frac{1}{2}CD=\frac{1}{2}*10=5 как катет лежащий против угла 30 в треугольнике CHD.  
BM \perp CPBM= \frac{1}{2}BC=\frac{1}{2}*16=8 как катет лежащий против угла 30 в треугольнике BMC. 
3  В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом \angle4= \angle3;\angle1: \angle3=1:2;
\angle1=30к;\angle3=60к; Тогда в ромбе \angle A =\angle C=120к; \angle B =\angle D=60к;
4  треугольник AMD равносторонний, \angle MAD=60к;, тогда 
\angle MAB=30к; Треугольник BAM равнобедренный, АВ=АМ, тогда \angle AMB= \frac{1}{2}(180-30)=75к;
5  \angle1= \angle2=; \angle1= \angle3; \Rightarrow \angle2= \angle3, треугольник MCD равнобедренный, MD=CD=3,  \angle3=\angle4,  \angle2=\angle5, как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4.
Тогда ВС=AD=7, АВ=CD=3, периметр P=2*(7+3)=20.
purbuevat56524
1  В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. 
Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d,  уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°.
2  В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD (\angle1= \angle2=30к; \angle1= \angle3; \Rightarrow \angle2= \angle3=30к;DH \perp CPDH= \frac{1}{2}CD=\frac{1}{2}*10=5 как катет лежащий против угла 30 в треугольнике CHD.  
BM \perp CPBM= \frac{1}{2}BC=\frac{1}{2}*16=8 как катет лежащий против угла 30 в треугольнике BMC. 
3  В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом \angle4= \angle3;\angle1: \angle3=1:2;
\angle1=30к;\angle3=60к; Тогда в ромбе \angle A =\angle C=120к; \angle B =\angle D=60к;
4  треугольник AMD равносторонний, \angle MAD=60к;, тогда 
\angle MAB=30к; Треугольник BAM равнобедренный, АВ=АМ, тогда \angle AMB= \frac{1}{2}(180-30)=75к;
5  \angle1= \angle2=; \angle1= \angle3; \Rightarrow \angle2= \angle3, треугольник MCD равнобедренный, MD=CD=3,  \angle3=\angle4,  \angle2=\angle5, как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4.
Тогда ВС=AD=7, АВ=CD=3, периметр P=2*(7+3)=20.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сформулируйте теорему о неравенстве треугольника и теорему о соотношении между сторонами и углами треугольника.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

yakushkinayuliya
KononovaMaiorov453
macmakka
al2nik2ol
Larax0819
Самохвалова-Геннадьевна
skryabinamaria
urazmetova
far-yuliya128
Гарик383
Matveevanastya0170
verakmves
maxkuskov2485
bas7572513
TSKaraulova