1) Периметр трапеции равен АВ+ВС+СД+АД, тогда АВ+ВД=64-24-30=10
АВ=ВД=5 см., т.к. трапеция равнобедренная.
2) Проведем высоты ВН и СМ, тогда четырехугольник ВНМС будет параллелограммом, т.к. ВН || СМ (высоты), ВС || НМ (как основания)
ВС=НМ, ВН=СМ по св-ву параллелограмма.
3) НМ=24, тогда АН+МД=30-24=6, а АН=МД, т.к. прямоугольные треугольники равны (док-во из первой задачи)
АН=МД=3 см.
По теореме пифагора найдем ВН=4
4) Площадь трапеции равна половине произведения оснований, помноженное на высоту, т.е. 24+30/2 * 4=108 см.2
находим площади треугольников по формуле герона:
S=rad(p(p-a)(p-b)(p-c))
rad-корень
p-полупериметр
a,b,c-стороны треугольника
1)Находим полупериметр:
(формула: p=(a+b+c)/2)
полупериметр первого треугольника:
p=(5+8+12)/2
p=12,5cm
полупериметр второго треугольника:
p=(15+24+36)/2
p=37,5cm
2)Находим площадь:
площадь первого треугольника:
S1=rad(12,5(12,5-5)(12,5-8)(12,5-12))
S1=rad(12,5×7,5×4,5×0,5)
S1=(15rad15)4
площадь второго треугольника:
S2=rad(37,5(37,5-15)(37,5-24)(37,5-36))
S2=rad(37,5×22,5×13,5×0,5)
S2=(135rad5)/4
3)Находим отношение площадей:
S1/S2=((15rad15)/4)/((135rad5)/4)
S1/S2=(rad3)/9
Поделитесь своими знаниями, ответьте на вопрос:
Боковая грань правильной треугольной пирамиды образует с плоскостью основания угол в 60 градусов. найдите сторону основания, если высота пирамиды равна 10√3
Нам дано, что боковая грань правильной треугольной пирамиды образует с плоскостью основания угол в 60 градусов. Это значит, что апофема SН (высота боковой грани) образует с плоскостью основания угол 60 градусов.
В прямоугольном треугольнике ОSH: tg60=SO/OH.
Отсюда ОН=SO/tg60 или ОН= 10√3/√3 =10.
Этот отрезок можно найти и по Пифагору:
SH²-ОН²=SO², отсюда ОН=√(300/3)=10.
ОН - это 1/3 от высоты правильного треугольника (основания пирамиды), так как медианы треугольника делится точкой пересечения (центром правильного треугольника) в отношении 2:1, считая от вершины. Значит высота равна 30. Тогда сторона основания "a" найдется из формулы: h=(√3/2)*a:
а=2*h/√3 или а=20√3.
ответ: сторона основания равна 20√3.