ответ: например
Объяснение:Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)= cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin. (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a Докажем формулу (3) Применяя последнюю формулу имеем sin(. ... ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где n ÎN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 ±a), sin(пи*n/2 ±a). Например cos(пи*n/2 -a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a. Аналогично выводятся следующие формулы: Sin.
1) Экскурс в теорию: угол между плоскостями (ВАС) и (САН)- двугранный угол (НАСВ) измеряется градусной мерой линейного угла L HCB , образованного лучами СВ и СН , имеющими начало на ребре (АС) и перепендикулярными к нему,
т.е. L HCB = 60⁰. (см. рис.).
2) Углом между прямой и плоскостью наз-ся угол между этой прямой и её проекцией на данную плоскость, тогда углом между катетом ВС и плоскостью (САН) является L L HCB = 60⁰ .
3) Угол между гипотенузой АВ найдём, рассмотрев ΔАВН - прям.:
sin L BAH = BH/AB = 0,5√3a/(a√2) =√6/4,
таким образом L BAH = arcsin √6/4.
ОТвет: 60⁰; arcsin √6/4.
УДАЧИ
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc медианы aa1 и сс1 равны соответственно 12 и 15, а сторона ас равна 12.найдите площадь треугольника авс
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒
АО=12:3•2=8
CO=15:3•2=10
Весь треугольник разделяется своими тремя медианами на шесть равновеликих (равных по площади) треугольников. Если провести медиану из В к АС, то
площадь ∆ АОС =2•1/6 S ABC=1/3 S ABC
По т.Герона площадь треугольника
S=√(р•(р-а)•(p-b)•(p-c), где а, b и c - стороны треугольника, р - его полупериметр.
р ∆ АВС=(12+8+10):2=15
По т.Герона S ∆AOC=√15•(15-8)•(15-10)•(15-12)
S ∆ AOC=√15•7•5•3=15√7⇒
S ∆ ABC=3•15√7=45√7 (ед. площади)