Объяснение:Нехай ∆АВС - прямокутний (∟C = 90°), ZB = 30°, МК - серединний перпендикуляр до сторони АВ.
Доведемо, що МК = 1/3ВС.
Розглянемо ∟АВС (∟C = 90°).
Оскільки ∟B = 30°, то АС = 1/2АВ.
МК - серединний перпендикуляр до АВ, тобто ВМ = МА = 1/2АВ і МК ┴ АВ.
Так як АС = 1/2АВ i ВМ = 1/2АВ, то АС = ВМ = МА.
Проведемо АК i розглянемо ∆АМК i ∆АСК:
1) ∟AMK = ∟АСК = 90° (за умовою);
2) АК - спільна;
3) AM = AC (iз попереднього).
Отже, ∆АМК = ∆АСК за катетом i гіпотенузою, тоді МК = КС.
Нехай МК = КС = х.
Розглянемо ∆ВМК (∟M = 90°): ∟B = 30°, тоді МК = -ВК,
ВК = 2 • МК = 2х. Так як т. А: належить відрізку ВС, то ВС = ВК + КС;
ВС = 2х + х = 3х; МК = х. Отже, МК = 1/3ВС.
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть катет прямокутного трикутника, якщо його проекція на гіпотенузу дорівнює 3 см, а гіпотенузу - 27 см
2. З вершини прямого кута опустимо пкрпендикуляр на гіпотенузу. за теоремою Піфагора знайдемо довжину перпендикуляра як невідомого катета: під коренем 144-64= під кор. 80= під кор. 16*5=4*корінь з пяти.
3. у 8 класі вчили, що квадрат цього перпендикуляра, що ми провели = добутку двох проекцій, одна 8 за умовою задачі, а другу позначимо х. тому 8х=(4*корінь з пяти) у квадраті
8х=80
х=10 - це друга проекція. отже, вся гіпотенуза=10+8=18.
4. за т.Піфагора знайдем невідомий другий катет. під коренем 18 у квадраті-12 у квадраті=6*корінь з пяти.
5. площа=1/2 *12*6корінь5=36*корінь з пяти.