Образующая конуса наклонена к плоскости основания под углом 30°.
Плоскость сечения образована сторонами, равными образующей, и угол между ними 60°
Плоскость сечения - правильный треугольник.
Треугольник, образованный образующей, радиусом конуса и его высотой - половина правильного треугольника.
Высота - катет этого треугольника и равна половине образующей.
Второй катет равен радиусу основания и, как высота правильного треугольника
( можно и по теореме ПИфагора найти), равен (а√3):2=(L√3):2
(L√3):2=6
L√3=12 см
L=12:√3=12√3:√3*√3=12√3:3=4√3 см
Как уже сказано, плоскость сечения - равносторонний треугольник.
Формула площади равностороннего треугольника
S=(a²√3):4
S=(L√3)²√3:4=S=(16 *3)√3:4=48√3:4
S= 12√3 cм²
Поделитесь своими знаниями, ответьте на вопрос:
Диагональ осевого сечения цилиндра составляет с плоскостью основания цилиндра угол 60°. найдите площадь осевого сечения, если объем цилиндра равен 16п корней из 3 см^3.
ΔАСD - прямоугольный с острым углом ∠САD=60°, значит ∠АСD=30°.
Катет АD лежит против угла 30° и равен половине гипотенузы АС; АС=2АD;
АС=2·2х=4х. Высота цилиндра СD=h. h²=АС²-АD²=16х²-4х²=12х².
h=√12х²=2х√3.
Объем цилиндра V=πR²h=16π√3;
πх²·2х√3=16π√3, разделим обе части равенства на π√3 и получим
2х³=16; х³=8; х=2 см. Радиус основания равен 2 см, АD=4 см.
СD=2х√3=4√3 см.
S(АВСD)=АD·СD=4·4√3=16√3 см².