OA =OD = OB =OC = Знайдіть площу рівнобічної трапеції, основи якої дорівнюють 10 см і 8 см, а діагоналі перпендикулярні до бічних сторін .
Дано: рисунок во вложении
ABCD равнобедренная трапеция
AD || BC ;
AB = CD ;
AD = 10 см ;
BC = 8 cм ;
∠ACD = ∠DBA =90° .
______________
S - ?
S = ( (AD +BC) /2 ) *h , нужно вычислить только высоту трапеции
Около равнобедренной трапеции можно омисать окружность (сумма противоположных углов равна 180°) . В данной задаче центром окружности является середина большого основания AD поскольку ∠ACD = ∠DBA =90° .
R= AD /2 = 10 /2 см =5 cм
OA = OD = OB = OC = R =5 cм
Высоту трапеции нетрудно определить из равнобедренного треугольника OBC . Проведем OH ⊥ BC , BH =CH =BC/2 =4 см ;
h = OH
Из ΔOHB по теореме Пифагоа OH =√(OB² - BH²) =√(5² - 4²) = 3 (см)
S = 0,5*(10+8)*3 = 9*3 = 27 (см²)
ответ: 27 см².
ответ: вторая высота равна либо дм , либо 6 дм .
ΔАВС , АС=18 дм , АВ=12 дм , СМ ⊥ АВ , ВР ⊥ АС .
Одна из высот равна 4 дм .
Так как в условии не сказано, какая высота равна 4 дм , то рассмотрим два случая .
1) Пусть задана высота СМ=4 дм .
Запишем, чему равна площадь ΔАВС в двух вариантах.
S=0,5*AB*CM = 0,5*AC*BP ⇒ АВ*СМ=АС*ВР .
Заменим стороны и высоту известными числами .
12*4=18*ВР , 48=18*ВР , ВР=48:18=2 и 2/3 дм
2) Пусть задана высота ВР=4 дм .
Аналогично имеем АВ*СМ=АС*ВР , 12*СМ=18*4 , 12*СМ=72 ,
СМ=72:12=6 дм
Поделитесь своими знаниями, ответьте на вопрос:
Чему равна высота правильной шестиугольной пирамиды со стороной основания "a" и боковым ребром "b"?
H=√(b²-a²).