Отрезок, соединяющий основание перпендикуляра и наклонной, проведённых из одной и той же точки, является проекцией этой наклонной. (см. рисунок в приложении).
В треугольнике боковая сторона - наклонная, его высота - перпендикуляр к прямой, содержащей другую сторону.
Высота равностороннего треугольника еще и медиана и биссектриса. Все углы равностороннего треугольника =60°. Поэтому проекция стороны - катет прямоугольного треугольника, который противолежит углу 30°. По свойству такого катета он равен половине гипотенузы. ⇒
Проекция стороны данного треугольника на прямую, содержащую другую сторону – 1:2=0,5
Отрезок, соединяющий основание перпендикуляра и наклонной, проведённых из одной и той же точки, является проекцией этой наклонной. (см. рисунок в приложении).
В треугольнике боковая сторона - наклонная, его высота - перпендикуляр к прямой, содержащей другую сторону.
Высота равностороннего треугольника еще и медиана и биссектриса. Все углы равностороннего треугольника =60°. Поэтому проекция стороны - катет прямоугольного треугольника, который противолежит углу 30°. По свойству такого катета он равен половине гипотенузы. ⇒
Проекция стороны данного треугольника на прямую, содержащую другую сторону – 1:2=0,5
Поделитесь своими знаниями, ответьте на вопрос:
ΔАВС-прямоугольный, ∠С=90°, ∠СДА=75°, СД-биссектриса, АС=3см.
Найти ∠А, АВ=?
∠А=180-∠ДСА-∠СДА
∠ДСА=1/2 ∠С (по условию)⇒∠ДСА=45°
∠А=180-45-75=60°, значит
∠В=90-60=30°⇒ АС=1/2АВ (как катет, лежащий в прямоугольном треугольнике против угла в 30°), значит
АВ=2АС=2*3=6 см
ответ:∠А=60°, АВ=6см