Треугольник PQW не обязательно прямоугольный. По т. синусов для него получаем PW=2R·sin∠Q=20·sin∠Q, а по т. косинусов для него же 20²·sin²∠Q=16²+12²-2·16·12·cos∠Q. Решаем это уравнение, получаем cos∠Q=0 и cos∠Q=24/25. Т.е. в первом случае PQW - действительно прямоугольный (см. рис. 1), а второй случай также существует при выпуклом ABCD (см. рис. 2.)
Т.к. AB/PB=CB/QB=5/4, то треугольник ABC подобен треугольнику PBQ с коэффициентом подобия 5/4, откуда AC=(5/4)·PQ=5*16/4=20 и AC||PQ. Аналогично, треугольник BCD подобен треугольнику QCW с коэффициентом 5, т.е. BD=5QW=5*12=60 и BD||QW, откуда угол между диагоналями ABCD равен углу PQW. Поэтому, площадь ABCD вычисляется по формуле (1/2)AC·BD·sin(∠PQW). Значит, в случае, когда PQW - прямоугольный S(ABCD)=(1/2)·20·60·sin(90°)=600. Во втором случае S(ABCD)=(1/2)·20·60·√(1-24²/25²)=168.
Александровна1685
15.01.2021
Треугольник PQW не обязательно прямоугольный. По т. синусов для него получаем PW=2R·sin∠Q=20·sin∠Q, а по т. косинусов для него же 20²·sin²∠Q=16²+12²-2·16·12·cos∠Q. Решаем это уравнение, получаем cos∠Q=0 и cos∠Q=24/25. Т.е. в первом случае PQW - действительно прямоугольный (см. рис. 1), а второй случай также существует при выпуклом ABCD (см. рис. 2.)
Т.к. AB/PB=CB/QB=5/4, то треугольник ABC подобен треугольнику PBQ с коэффициентом подобия 5/4, откуда AC=(5/4)·PQ=5*16/4=20 и AC||PQ. Аналогично, треугольник BCD подобен треугольнику QCW с коэффициентом 5, т.е. BD=5QW=5*12=60 и BD||QW, откуда угол между диагоналями ABCD равен углу PQW. Поэтому, площадь ABCD вычисляется по формуле (1/2)AC·BD·sin(∠PQW). Значит, в случае, когда PQW - прямоугольный S(ABCD)=(1/2)·20·60·sin(90°)=600. Во втором случае S(ABCD)=(1/2)·20·60·√(1-24²/25²)=168.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прямые а и в параллельные, угол 2 равен 125. найдите сумму углов 1 и 3