Объяснение:
1 <3+<6=180 односторонние - ДА
2 <8=<4 соответственные - ДА
3 <5+<7=180 - НЕТ
4 <3= <5 - накрест лежащие - ДА
2
<1=78 градусов
<3=<1=78 градусов как вертикальные
<5=<1=78 градусов как соответственные
<8=180-<1=180-78=102 градуса как внешние односторонние
<7=<1=78 градусов как внешние накрест лежащие
<2=180-<7=180-78=102 градуса как внешние односторонние
<6=180-<3=180-78=102 градуса как внутренние односторонние
<4=<6=102 градуса как внутренние накрест лежащие
Дано : ΔABC, ∠C = 90°, CN = 1 см, NB = 2 см,
вписанная окружность (O; r)
Найти : S, r, R
Так как окружность вписана в треугольник, то стороны треугольника являются касательными к окружности. Радиус, проведённый в точку касания, перпендикулярен касательной в этой точке.
ON⊥CB, OK⊥AC, OM⊥AB
⇒ CKON - квадрат со стороной, равной радиусу вписанной окружности
⇒ r = CK = KO = JN = CN = 1 см
Отрезки касательных к окружности, проведённые из одной точки, равны
BM = BN = 2 см; AK = AM = x см
ΔABC :
BC = CN + BN = 1 см + 2 см = 3 см
AC = AK + KC = (x + 1) см
AB = AM + MB = (x + 2) см
Площадь прямоугольного треугольника можно вычислить через полупроизведение катетов или через произведение полупериметра на радиус вписанной окружности.
AC = x + 1 = 4 см; AB = x + 2 = 5 см
см²
Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы
см
ответ : S = 6 см², r = 1 см, R = 2,5 см
Поделитесь своими знаниями, ответьте на вопрос:
Вопросы к зачёту по . 7 класс. |. формулировки и определения. 1) прямая и её части 2) смежные и вертикальные углы и их свойства 3) перпендикуляр, проведённый из точки к прямой 4) классификация треугольников ( по углам и сторонам ) 5) параллельные прямые. аксиома параллельных прямых 6) свойства и признаки параллельных прямых 7) окружность. центр, радиус, диаметр, хорда
3-Смежными называются два угла, одна сторона которых общая, а две другие образуют прямую, то есть Дополняющего лучами.
Сумма смежных углов равна 180 градусам.
Два смежных углы образуют развернутый угол.
Если два угла равны, то смежные с ними углы тоже равны.
Угол, смежный с прямым углом, является прямым.
Угол, смежный с острым углом, тупой.
Угол, смежный с тупым углом, является острым.
Любой луч, исходящий из вершины развернутого угла и проходит между сторонами разделяет его на два смежные углы.
Если два угла равны, то смежные с ними углы также равны.
Два угла, смежные с одним и тем же углом, уровне.
Если два смежных углы равны, то они прямые.
Вертикальными называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла.
Вертикальные углы равны.
При пересечении двух прямых образуются две пары вертикальных углов и четыре пары смежных углов.
Если известен один из углов, образовавшихся при пересечении двух прямых, то найти другие углы можно следующим образом: найти угол, смежный с данным, учитывая, что их сумма 180 градусов, после чего найти углы, вертикальные с известными, учитывая, что вертикальные углы уровне.