ответ. 102.
Объяснение:
Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
Точка пересечения медианы со стороной треугольника - основание медианы.Отрезок, который проведен через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек и ее длина равна половине длины основания.
МК=АВ:2=14:2=7
Т.е.фигура АВМК будет иметь две параллельные прямые АВ||KM
и будет являться трапецией.
Медианы делят стороны пополам. Следовательно
ВМ=ВС:2=6
АК=АС:2=9
Р=АВ (14)+ВМ (6)+АК (9)+МК(7)=36
Поделитесь своими знаниями, ответьте на вопрос: