АD-высота, медиана биссектриса ΔАВС. ∠СВD=30° так как ΔАВС- правильный. все углы по 60°. СD=0,5ВС=21 см. Точка О делит ВD в отношении 2:1 считая от вершины В. ВD²=ВС²-СD²=42²-21²=1764-441=1323; ВD=21√3. ОD=21√3 /3=7√3 см. ΔОМD. МD²=ОD²+ОМ²=49·6+49·3=49·9=441; МD=21 см. ΔМСD - прямоугольный равнобедренный, СD=МD, значит ∠СМD=45°, а так как МD биссектриса ∠АМС, то ∠АМС=90°.
Шавкат кызы
22.04.2022
В треугольнике: катеты а и b, гипотенуза с, прямой угол С, R - радиус описанной окружности, r- радиус вписанной окружности. Начнём с описанной окружности. Поскольку угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r. Тогда отрезки катетов, прилегающих к вершинам острых углов, равны (а - r) и (b - r). Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r). Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r. Но ранее мы получили, что с = 2R Тогда 2R = a + b - 2r 2R + 2r = a + b R + r = 0.5(a + b) что и требовалось доказать.
Artyukhin545
22.04.2022
Якщо даний чотирикутник розділити діагоналлю (наприклад АС) на два трикутники, то якщо з"єднати попарно середини сторін (точки М і N, та К і Р) отримаємо середні лінії трикутників, які паралельні третій стороні, тобто діагоналі, а отже паралельні між собою (МN || KP). Якщо провести у чотирикутнику і іншу діагональ (ВД), то аналогічно отримаємо, що МК || NP. Отже отримали чотирикутник МNPK у якому сторони попарно паралельні, як відомо такий чотирикутник - це паралелограм, а у паралелограма протилежні кути - рівні, що й треба було довести.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вправильной треугольной пирамиде сторона основания равна 42 , высота равна 7√6. найдите плоский угол при вершине пирамиды
Точка О делит ВD в отношении 2:1 считая от вершины В.
ВD²=ВС²-СD²=42²-21²=1764-441=1323; ВD=21√3.
ОD=21√3 /3=7√3 см.
ΔОМD. МD²=ОD²+ОМ²=49·6+49·3=49·9=441; МD=21 см.
ΔМСD - прямоугольный равнобедренный, СD=МD, значит ∠СМD=45°, а так как МD биссектриса ∠АМС, то ∠АМС=90°.