egorsalnikov1997139
?>

Доказать, что угол между биссектрисами двух внутренних односторонних углов, образованных при пересечении двух параллельных прямых третьей прямой, равен 90 градусам

Геометрия

Ответы

Viktor1316
:))))))))))))))))))))))))))))))
Доказать,что угол между биссектрисами двух внутренних односторонних углов,образованных при пересечен
hamelleon43

(5)  (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6)  (5) – очевидно. (4)  (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние  , т.е. является центром описанной около этого треугольника окружности радиуса  . 

(8)  (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние  ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы. 

(8)  (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то  BAC =  BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом, 

 BDC +  CDA +  ADB =  BAC+ CBA + ACB = 180o.
scraer198258

(5)  (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6)  (5) – очевидно. (4)  (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние  , т.е. является центром описанной около этого треугольника окружности радиуса  . 

(8)  (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние  ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы. 

(8)  (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то  BAC =  BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом, 

 BDC +  CDA +  ADB =  BAC+ CBA + ACB = 180o.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Доказать, что угол между биссектрисами двух внутренних односторонних углов, образованных при пересечении двух параллельных прямых третьей прямой, равен 90 градусам
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ЛАРИСА Насоновская231
Ivanskvortsov25
marinarodina90
mekap22044
Иванникова736
annayarikova
marinadetsad
iriska-669
Artak96993298
info36
Olybetezina1973
Kulikovvl9
albina6580
Lvova_Aleksandr933
Косоногов Иосифовна