Построим окружность с центром в точке О и радиусом R.
Проведём две равные хорды: AB и CD.
Соединим центр окружности с крайними точками хорд AB и CD.
Рассмотрим треугольники AOB и COD. По условию AB и CD равны. Так как точки A, B, C и D лежат на окружности, OA, OB, OC и OD - радиусы (они проведены от центра окружности до точки, лежащей на окружности) и, соответственно, равны.
Так как AB = CD, OA = OD, OB = OC, то треугольники AOB и COD равны по третьему признаку равенства треугольников (т.е. по трём сторонам). Значит, их соответствующие углы тоже равны. Следовательно, угол AOB равен углу COD.
Что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
На окружности последовательно отмечены точки a, b, c, d, . точки m, n, k, - середины хорд ab, bc и cd соответственно. докажите, что углы bmn и nkc равны.
Проведем через точку Р прямую PB, параллельную основанию MLтреугольника KLM. На касательной PL отметим точку А. <KLA=<KML (так как <KML - вписанный и опирается на дугу KL, а <KLA - угол между касательной LA и хордой KL, равный половине дуги KL - свойство).
<PLB=<KLA - вертикальные => <KML= <PLB. <PBL= <KLM (соответственные при параллельных ML и РВ), <KLM = <KML (углы при основании равнобедренного треугольника) => <PBL=<PLB и треугольник PLB равнобедренный. => PL=PB, HL=HB=PM/2.
По свойству касательной и секущей PL² =PK*PM = 8(8-a), где а - сторона треугольника KLM.
NL= a/2 (дано), LH=PM/2 = (8-a)/2. Проекция PN на КL - это отрезок NH = NL+LH = a/2+(8-a)/2 = 4.
ответ: 4 ед.