∠АВН = 30°; ∠ВАР = 45°.
Пошаговое объяснение:
Концы отрезка, длина которого 16 см, принадлежат двум взаимно перпендикулярным плоскостям. Расстояние от концов отрезка до линии пересечения плоскостей равны 8 см и 8√2 см. найти углы, которые образует отрезок со своими проекциями на данные плоскости.
Решение.
Даны две взаимно перпендикулярные плоскости α и β.
Пусть отрезок АВ = 16 см. Расстояние от точки А, принадлежащей плоскости α, до линии пересечения плоскостей - это перпендикуляр АН, а расстояние от точки В, принадлежащей плоскости β, до линии пересечения плоскостей - это перпендикуляр ВР. Соответственно, ВН - проекция отрезка АВ на плоскость β, а АР - проекция отрезка АВ на плоскость α.
Следовательно, надо найти углы АВН и ВАР.
Отметим, что АН⊥НВ, а ВР⊥АР, так как АН⊥β, а ВР⊥α соответственно по построению.
В прямоугольном треугольнике АВН:
Sin(∠АВН) = АН/АВ =8/16 = 1/2. => ∠АВН = 30°
В прямоугольном треугольнике АРВ:
Sin(∠ВАР) = ВР/АВ =8√2/16 = √2/2. => ∠ВАР = 45°.
Поделитесь своими знаниями, ответьте на вопрос:
начертите треугольник abc . от точек b и c отложите векторы , соответственно равные векторам ac и ab докажите что концы построенных векторов .
1) Надо знать, что равные векторы - это векторы, имеющие не только одну длину, но и одно направление. Вместе - одинаковые координаты.
2) Начертим Δ АВС и отметим векторы АС и АВ стрелочками.
От точки В отложим вектор ВД=АС (одинаковый по длине и ║ АС и направленный в ту же сторону)
От т.С отложим вектор СД1 равный по длине вектору АВ и ║ АВ и направленный так же, как АВ.
Концы векторов ВД и СД1 сойдутся в одной точке Д(Д1), т.к.
АВДС - параллелограмм по построению.
ВД=АС и ВД║АС (признак параллелограмма)
Если стороны равны и ║, то это параллелограмм.
Соответственно АВ=СД и АВ║СД.
Векторы ВД и СД - искомые векторы.