У параллелограмма имеется четыре угла. У прямоугольника и квадрата все они равны 90 градусам, у остальных же параллелограммов их значение может быть произвольным. Зная другие параметры фигуры, эти углы можно вычислить. Углы прямоугольника и квадрата находить не требуется - они всегда равны 90°. У ромба же углы могут быть различными, но в связи с одинаковыми длинами всех четырех сторон формула может быть упрощена:S=a^2*sin α, где a - сторона ромба, α - острый угол, S - площадь.Соответственно, угол α равен значению:α=arcsin(S/a^2).Значение тупого угла найдите указанным выше.
Gatina
19.07.2022
Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
steff77
19.07.2022
Построить касательную к данному кругу: а) параллельную данной прямой. Из центра окружности опустить перпендикуляр на данную прямую. Он пересечёт окружность в точке касания. Через полученную точку провести прямую, перпендикулярную построенному перпендикуляру к данной прямой. Эта прямая будет параллельна данной прямой.
б) перпендикулярную к данной прямой. Из центра окружности опустить перпендикуляр на данную прямую. Из центра окружности восстановить перпендикуляр к построенному перпендикуляру. Он пересечёт окружность в точке касания. Через полученную точку провести прямую, перпендикулярную к данной прямой. Эта прямая и будет перпендикулярна данной прямой.
в) под данным острым углом к прямой. В любой точке данной прямой построить прямую под заданным к ней углом. Затем по пункту а) построить параллельную касательную прямую.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Можно ли найти углы параллелограмма по длинам сторон?