Объяснение:
Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
1)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (20 - х).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{20-x}=\frac{10}{15}\\ 15x = 10(20-x)\\ 15x = 200-10x\\ 15x + 10x = 200\\ 25x = 200\\ x = 8\\ AD=8 \\ DC=12\\\end{gathered}
DC
AD
=
BC
AB
20−x
x
=
15
10
15x=10(20−x)
15x=200−10x
15x+10x=200
25x=200
x=8
AD=8
DC=12
2)
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{8}{5}=\frac{16}{BC}\\ BC = \frac{16*5}{8}\\ BC = 10\\\end{gathered}
DC
AD
=
BC
AB
5
8
=
BC
16
BC=
8
16∗5
BC=10
3)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (х+1).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{x+1}=\frac{2}{7}\\ 7x = 2(x+1)\\ 7x = 2x+2\\ 5x = 2 \\ x = 0.4\\ AD=0.4 \\ DC=1.4\\ AC=AD+DC=0.4+1.4=1.8\\\end{gathered}
DC
AD
=
BC
AB
x+1
x
=
7
2
7x=2(x+1)
7x=2x+2
5x=2
x=0.4
AD=0.4
DC=1.4
AC=AD+DC=0.4+1.4=1.8
Поделитесь своими знаниями, ответьте на вопрос:
Медиана, проведённая к основанию равнобедренного треугольника, равна 160 см, а основание треугольника равно 80 см. найдите две другие медианы этого треугольника. распишите подробнее, !
По теореме Пифагора находим AB:
AB² = AH²+BH² = 160²+40²=27200
AB = 40√17
Рисунок 2. На луче AO отложим отрезок OD, OD=AO. Соединим точку D с точками B и C. Рассмотрим четырехугольник ABDC. BO=CO (так как AO — медиана треугольника ABC); AO=DO (по построению). Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ABDC — параллелограмм.
По свойству диагоналей параллелограмма
AD²+BC²=2*(AB²+AC²)
AD²+(40√17)²=2*((40√17)²+80²)
AD²=2*(27200+6400)-27200
AD²=40000
AD = 200
AO = AD/2 = 200/2 = 100
Медианы AO и CO1 равны (рисунок 3).
т.е. AO = CO1 = 100