4) Примем угол А=а, угол В=b
В равнобедренном треугольнике углы при основании равны. ⇒
в ∆ АДС ∠АCD=∠CAD=а.
По условию СD=АD, а СD - медиана, и АD=ВD, ⇒ СD=ВD.
∆ ВDС равнобедренный. Углы при основании равнобедренного треугольника равны. ∠ВСD=∠СВD=b
Из найденного следует: угол С=а+b
Сумма углов треугольника 180°
Угол А+угол С+угол В=180° ⇒
а+b+a+b=180°
2a+2b=180°⇒
a+b=90° - угол С=а+b=90°
(Полезно помнить: Если в треугольнике медиана равна половине стороны, к которой проведена, этот треугольник – прямоугольный).
======
5) В ∆ АОС отрезок ОF перпендикулярен АС⇒ ОF – высота, а т.к. ∆ АОС равнобедренный (АО=ОС – дано), то ОF - медиана. ∆ АВF=∆ BCF– они прямоугольные с равными катетами: АF=FC (доказано), и ВF - общий, ⇒ АВ=ВС.
В равнобедренном ∆ АВС отрезок ВF- не только высота, но и медиана и биссектриса. Расстояние от точки до прямой - длина проведенного перпендикулярно к прямой отрезка.
Треугольники ВКО и ВМО прямоугольные с общей гипотенузой ВО и равным острым углом при В. Эти треугольники равны по углу и гипотенузе. Следовательно. ОМ=ОК=4.
≈≈≈≈≈≈≈≈
6) Медиана AF делит ВС на равные отрезки. BF=CF⇒
DF - медиана ∆ BDC и по свойству медианы прямоугольного треугольника равна половине гипотенузы
DF=ВС:2=5 (ед. длины)
======
8) Сумма острых углов прямоугольного треугольника 90°. ⇒
угол САВ=90°-34°=56°
Медиана СМ делит ∆ АВС на равнобедренные: ∆ АМС с углами при АС, равными 56°, и ∆ ВМС с углами при ВС, равными 34°.
Угол АСН=90°-56°=34°
∠НСМ=∠АСМ -∠АСН.
Угол НСМ=56°-34°=22°
1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2
Поделитесь своими знаниями, ответьте на вопрос:
Постройте треугольник авс, если а(-3; 5) в(3; 0) с(0; -5)