Возьмем равнобедренный треугольник ABC и построим высоты AH, BF, CD
Рассмотрим полученные треугольники ABF и ACD. Сторонf AB=AC по условию задачи, так же как и углы BAF=CAD. Так как высота в равнобедренном треугольнике является и биссектрисой то углы ABF=ACD= 600/2=300
Первый признак равенства треугольников: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Значит треугольники ABF и ACD равны значит и сторона AH = CD (являющиеся высотами треугольника ABC)
также доказывается равенство высоты BF
(как то так)
1. Пусть х - один из вертикальных углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Вертикальные углы равны, тогда 2х - сумма двух вертикальных углов.
Получаем уравнение:
2x + 30° = 180° - x
3x = 150°
x = 50°
ответ: каждый из двух вертикальных углов равен 50°.
2. Пусть х - один из углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Получаем уравнение:
1/8 x + 3/4 (180° - x) = 90° |· 8
x + 6 (180° - x) = 720°
x + 1080° - 6x = 720°
5x = 360°
x = 72° - один из смежных углов.
180° - 72° = 108° - второй угол.
Разность данных углов:
108° - 72° = 36°
ответ: 36°.
3. ∠1 + ∠2 + ∠3 - ∠4 = 280° по условию задачи.
∠1 = ∠3 и ∠2 = ∠4 как вертикальные, значит
2 · ∠1 = 280°
∠1 = 140°
∠3 = ∠1 = 140°
∠2 = 180° - ∠1 = 180° - 140° = 40°, так как ∠2 и ∠1 смежные, а сумма смежных углов равна 180°.
∠4 = ∠2 = 40°
ответ: 40°, 40°, 140°, 140°.
Поделитесь своими знаниями, ответьте на вопрос:
Постройте треугольник со сторонами a, b, c, если a = 5см, b = 4 см, c = 2см.
ответ:Намалюй триугольник з сторонами а в с і потім ростав
І додай і все
Объяснение: