Все задачи изображены на рисунке в приложении. 1) Координаты вектора MN(7-4; -9-5) = MN(3;-4) - ОТВЕТ. 2) Длина вектора по теореме Пифагора R = √(3²+4²) = √25 = 5 - ОТВЕТ 3) Координаты середины отрезка - среднее арифметическое координат концов отрезка. Сх= (-10 + (-2)/2 = -6 Су= (5 + 1)/2 = 3 и окончательно С(-6;3) - ОТВЕТ 4) Находим вектор АВ(-8;4) и по теореме Пифагора длину отрезка AB = √(8²+4²) = √80 =√16*5 = 4√5 - ОТВЕТ 5) Координаты точки D - середины отрезка АС. Dx = (4-2)/2 = 1 Dy = (-3 +1)/2 = -1 Окончательно координаты точки D(1;-1) - ОТВЕТ
Tarapovskaya
27.07.2020
Цитата: "Неравенство треугольника для трёхгранного угла: Каждый плоский угол трёхгранного угла меньше суммы двух других его плоских углов. Сумма плоских углов трёхгранного угла меньше 360 градусов." Значит для 1)90° ,65° , 45° - такой трехгранный угол существует, так как 90+65+45=200, а 90<45+65. 2)80° ,47°,120° - такой трехгранный угол существует, так как 80+47+120=247, а 120<80+47. 3)150°,130°,90° - такой трехгранный угол НЕ существует, так как 150+130+90=370 4)33°,45°,78° - такой трехгранный угол НЕ существует, так как 33+45+78=156, но 78=33+45.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Даны точки V(8;5) и N(−7;3) . Найди координаты вектора VN−→ и вектора NV−→. VN−→ = ( ; ); NV−→ = ( ;
1) Координаты вектора MN(7-4; -9-5) = MN(3;-4) - ОТВЕТ.
2) Длина вектора по теореме Пифагора
R = √(3²+4²) = √25 = 5 - ОТВЕТ
3) Координаты середины отрезка - среднее арифметическое координат концов отрезка.
Сх= (-10 + (-2)/2 = -6
Су= (5 + 1)/2 = 3 и окончательно
С(-6;3) - ОТВЕТ
4) Находим вектор АВ(-8;4) и по теореме Пифагора длину отрезка
AB = √(8²+4²) = √80 =√16*5 = 4√5 - ОТВЕТ
5) Координаты точки D - середины отрезка АС.
Dx = (4-2)/2 = 1
Dy = (-3 +1)/2 = -1
Окончательно координаты точки
D(1;-1) - ОТВЕТ