я так, на всякий случай :))) имеем РАВНОБЕДРЕННЫЙ ПРЯМОУГОЛЬНЫЙ треугольник. Отсюда понятно БЕЗ СЛОВ, что AD = DC = PE = BC/2 (ну, средняя линяя). Построим в нем окружность на стороне АС как на ДИАМЕТРЕ. Точка E САМО СОБОЙ лежит на этой окружности. Поскольку угол CDA прямой, то вершина ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА, ОПИРАЮЩЕГОСЯ НА ДИАМЕТР, лежит на окружности. Осталось только соединить D и P и заметить, что треугольник DPC - равнобедренный с углом 60 градусов у основания СD, то есть РАВНОСТОРОННИЙ.
Поэтому CD = PD = PC = AP = PE где то среди этих равенств затерялось и нужное нам :
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь параллелограмма изображенного на рисунке.
ответ без решения 4 :
Да ладно, напишу решение.
По свойству отрезков касательных из одной точки сразу ясно, что периметр А1В1С (без 1) равен УДВОЕННОМУ отрезку от вершины С до точки касания АС с вписанной окружностью. Это на самом деле уже ВСЁ решение, но я продолжу :))
Надо найти r - вписанной окружности и угол С (точнее, надо найти ctg(C/2));
По формуле Герона считаем площадь треугольника, она равна 6*√6; полупериметр 9; отсюда r = 2*√6/3;
по теореме косинусов
7^2 = 5^2 + 6^2 - 2*5*6*cos(C); откуда cos(C) = 1/5; ctg(C/2) = √6/2;
Поэтому искомая величина равна
2*r*ctg(C/2) = 2*(6*√6)*(√6/2) = 4