Объяснение:
ОА⊥DА по свойству касательной , ∠DАО=90°.
∠х+∠ВАО=90° и ∠х=∠ВАО=45°
ΔВАО-равнобедренный, т.к. ОВ=ОА , поэтому углы при основании равны ∠В=∠ВАО=45°, тогда центральный угол ∠ВОА=180°-2*45°=90°⇒ дуга ∪АВ=90°.
"Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами"⇒∠х=90°:2=45°
2) "Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами"⇒ ∠Р=(∪АВ-∪АС):2
25°=(80°-х):2
50°=80°-х
х=30°
3)∠МАС=75°, ∠РВС=60° . По правилу об угле, образованном касательной и хордой, проходящей через точку касания ⇒∪АС=150° и ∪ВС=120°. Значит на ∪АВ остается ∪АВ=360°-150°-120°=90°.
∠С-вписанный и опирается на ∪АВ⇒∠С=45°.
ДАЛЬШЕ МОЖНО ТАК.......По т. о смежных углах ∠РАС=180°-75°=105° и ∠РВС=180°-60°=120°
Сумма углов четырехугольника 360° , х=360°-105°-45°-120°=90°
ИЛИ МОЖНО ТАК..........Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами⇒ х= ((120°+150°)-90° ):2=90°
Поделитесь своими знаниями, ответьте на вопрос:
Из точки к плоскости проведен перпендикуляр и две наклонные. Длины наклонных составляют 5 и 8 м. Проекция меньшей из них равна 4м. Определите длину перпендикуляра и проекцию второй наклонной.
h=3 (м)
bx= (м)
Объяснение:
1) h^2 = 5^2 - 4^2 = 25 - 16 = 9; h=3 (м)
2) bx^2 = 8^2 - 3^2 = 64 - 9 = 55; bx= (м)