Объяснение:
1. Сумма углов правильного n-угольника равна 180 • n - 360 или 180 • (n-2). А теперь считаем:
180 • 14 - 360 = 2160 или 180 • (14 - 2) = 2160
2.Площадь параллелограмма равна: сторона * высоту, проведенную к ней. Следовательно: 84 \ 12 = 7 (см)
3.Обозначим треугольник как АВС где АС основание, ВК - высота. зная что АВ = 15, а ВК = 9 найдём АК по теореме пифагора:
АК в квадрате = АВ в квадрате-ВКв квадрате , АК в квадрате = 225 - 81
АК=корень из 144 , АК = 12.
так как треуг равнобедренный то АВ = СВ = 15 . Найдём КС по теореме пифагора:
КС в квадрате = ВС в кв-ВК в кв , КС в кв = 225-81=144 в корне
КС = 12, значит АС = АК+КС
АС=24 , найдём площадь по формуле
ответ:108 см кв
4.Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Пусть ВО = х, тогда BD = 2x, AC = 2x +28, AO = x + 14
ΔABO: ∠O = 90°
По теореме Пифагора:
AB² = AO² + OB²
26² = (x + 14)² + x²
x² + 28x + 196 + x² - 676 = 0
2x² + 28x - 480 = 0
x² + 14x - 240 = 0
D/4 = 7² + 240 = 49 + 240 = 289 = 17²
x = -7 + 17 = 10 или x = -7 -17 = -24 не подходит по смыслу задачи
BD = 20 см
AC = 20 + 28 = 48 см
Sabcd = 1/2 ·BD · AC = 1/2 · 20 · 48 = 480 (см²)
5.фото
а 2 вариант на подобия этого подставить под формулы
Поделитесь своими знаниями, ответьте на вопрос:
ІІ варіант 1. Накресліть трапецію BKDS (DS|| ВК Укажіть її основи та бічні сторони.2. Знайдіть градусну міру кута, вписаного в коло, якщо відповідний йому центральний кут дорівнює 55°.3. Сторони трикутника дорівнюють 8 см, 14см і 10 см. Знайдіть периметр трикутника, сторонами якого єсередні лінії даного трикутника.4. Середня лінія трапеції дорівнює 11 см. Знайдіть основи трапеції, якщо одна з них на 6 см менша за другу.Тупий кут прямокутної трапеції на 36° більший від її гострого кута Знайдіть ці кути.6.Діагональ рівнобічної трапеції ділить навпіл її тупий кут, а середню лінію — на відрізки 8 см і 5 см.Знайдіть периметр трапеції.
<BAC = 30° (150°).
Объяснение:
В прямоугольном треугольнике СЕА косинус угла А равен
CosA = AE/AC.
В прямоугольном треугольнике ADB косинус угла А равен
CosA = AD/AB.
Следовательно, АЕ/АС = AD/AB. => треугольник DAE подобен треугольнику АВС c коэффициентом подобия, равным CosA.
CosA = DE/BC = 3/2√3 = √3 /2.
ответ: угол А равен 30°. (Или 150° для тупоугольного треугольника с тупым углом А).
P.S. Насчет подобия - это теорема, которую, может быть, Вы не проходили. Она справедлива, естественно, для любых треугольников. Но для любознательных привожу все варианты.