1) ответ: 36√3 ед²
Объяснение:
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=8√3. Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=4√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=2√3.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=48-12=36; РН=6.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=4√3.
S(КМРТ)=(МР+КТ)/2 * РН = (8√3+4√3)/2 *6=(6√3)*6=36√3 ед²
Объяснение:
Пусть высота CD и медиана CM делят угол C треугольника ABC на три равные части. Предположим, что точка D расположена между B и M. Обозначим ∠BCD = ∠DCM = ∠ACM = α. Поскольку в треугольнике BCM высота CD является биссектрисой, то этот треугольник равнобедренный, поэтому CD – медиана треугольника BCM и BD = DM.
Биссектриса CM треугольника ACD делит сторону AD на отрезки, пропорциональные сторонам AC и CD, то есть
CD : AC = DM : AM = DM : BM = ½.
Значит, ∠CAD = 30°. Следовательно, 2α = ∠ACD = 90° – ∠CAD = 60°, α = 30°.
Поделитесь своими знаниями, ответьте на вопрос:
В прямоугольнике диагональ равна 20, а угол между ней и одной из сторон равен 30°. Найдите площадь прямоугольника, делённую на (квадратный корень из трех
Чертёж смотрите во вложении.
Дано:
Четырёхугольник ABCD - прямоугольник.
DB - диагональ = 20.
∠DBC = 30°.
Найти:
Проведём ещё одну диагональ АС. Точку пересечения АС и DB назовём О.
Прямоугольник - это тоже параллелограмм. Диагонали параллелограмма точкой пересечения делятся пополам. А так как ещё по свойству прямоугольника равны, то ВО = OD = AO = OC. Следовательно, ΔВОС - равнобедренный.
Рассмотрим ΔВОС - равнобедренный (ВО и ОС - боковые стороны). ∠ОВС = ∠ОСВ = 30°, так как прилегают к основанию. Рассмотрим ∠ODC - внешний для ΔВОС - равнобедренный. Следовательно, равен сумме углов не смежных с ним. То есть, ∠ODC = ∠ОВС +∠ОСВ = 30°+30° = 60°.
Площадь четырёхугольника равна половине произведения его диагоналей и синуса угла между ними.
S (ABCD) = 0,5*AC*DB*sin (∠ODC)
sin (60°) = (√3)/2.
AC = DB = 20.
То есть -

ответ: 100 (ед²).