AB = CD =8 ; AD =BC = 15 ; AA₁┴ (ABCD). Пусть ABCDA₁B₁CD₁ прямоугольный параллелепипед , сечение A₁B₁CD (проходит через меньшие стороны A₁B₁ и CD). Угол между плоскостями A₁B₁CD и ABCD_ (A₁B₁CD)^ (ABCD) =< A₁DA (линейный угол) =60°; .действительно , CD ┴ AD и CD ┴ A₁D (по обратной теореме трех перпендикуляров ) . Значит A₁B₁CD прямоугольник. V =S(ABCD)*A₁A =DC*AD*A₁A =8*15*A₁A =120*A₁A ; ΔA₁AD <A₁AD = 90° : A₁A = AD*tq(< A₁DA) =15*tq60° =15√3 ;A₁D = AD/cos(< A₁DA) =15/cos60° =15/(1/2) =30. V = 120*15√3 =1800√3.
S( A₁B₁CD )=DC*A₁D. S( A₁B₁CD )=8*30 =240 ,
almazsit85
05.01.2020
a)Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. б)Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. в)Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны. г)Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сторона основания правильной треугольной пирамиды равна 4 см. Боковые ребра наклонены к плоскости основания под углом 45 найдите объем пирамиды
Пусть ABCDA₁B₁CD₁ прямоугольный параллелепипед , сечение A₁B₁CD (проходит через меньшие стороны A₁B₁ и CD). Угол между плоскостями A₁B₁CD
и ABCD_ (A₁B₁CD)^ (ABCD) =< A₁DA (линейный угол) =60°; .действительно , CD ┴ AD и CD ┴ A₁D (по обратной теореме трех перпендикуляров ) . Значит A₁B₁CD прямоугольник.
V =S(ABCD)*A₁A =DC*AD*A₁A =8*15*A₁A =120*A₁A ;
ΔA₁AD <A₁AD = 90° :
A₁A = AD*tq(< A₁DA) =15*tq60° =15√3 ;A₁D = AD/cos(< A₁DA) =15/cos60° =15/(1/2) =30.
V = 120*15√3 =1800√3.
S( A₁B₁CD )=DC*A₁D.
S( A₁B₁CD )=8*30 =240 ,