проекция вершины s на основание , есть точка пересечения диагоналей квадрата abcd .
положим что это точка h .
l,k середины as, cs соответсвенно , также положим что b1k пересекает bc в точке x , можно теореме менелая , тогда
bb1/b1s * sk/kc * cx/bx=1
или (20-5)/5*(1/1)* (cx/(24+cx))=1 , откуда cx=12 , значит bx=36. аналогично если y точка пересечения lb1 с ab , тогда by=36 .
опустим высоту из точки b1 на основание , основание высоты n будет лежат на диагонали . найдём b1n , подобия треугольников shb и b1nb , тогда sh/b1n = 4/3
по теореме пифагора sh=sqrt(bs^2 - bh^2) = sqrt(bs^2-(bd/2)^2) = sqrt(20^2-(12 sqrt()= sqrt(112) , значит b1n = 3*sqrt(7) и bn=sqrt(15^2-9*7)=9*sqrt(2) . xby равнобедренный и прямоугольный треугольник , положим что m точка пересечения bn и xy , тогда bm=36*sqrt(2) , и mn=bm-bn= 36*sqrt(2)-9*sqrt(2) = 27*sqrt(2) .
тогда если "a" это угол между плослкостью основания и данной плосокостью то
tga=b1n/mn = 3*sqrt(7) / 27*sqrt(2) = sqrt(14)/18 , откуда
a=arctg(sqrt(14)/18) .
gordeevadesign2986
08.03.2020
Т к у ромба все стороны раны, и известен периметр, найдем длины сторон: АВ=ВС=СК=АК=16/4=4см. Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)
відповідь:
пояснення:
проекция вершины s на основание , есть точка пересечения диагоналей квадрата abcd .
положим что это точка h .
l,k середины as, cs соответсвенно , также положим что b1k пересекает bc в точке x , можно теореме менелая , тогда
bb1/b1s * sk/kc * cx/bx=1
или (20-5)/5*(1/1)* (cx/(24+cx))=1 , откуда cx=12 , значит bx=36. аналогично если y точка пересечения lb1 с ab , тогда by=36 .
опустим высоту из точки b1 на основание , основание высоты n будет лежат на диагонали . найдём b1n , подобия треугольников shb и b1nb , тогда sh/b1n = 4/3
по теореме пифагора sh=sqrt(bs^2 - bh^2) = sqrt(bs^2-(bd/2)^2) = sqrt(20^2-(12 sqrt()= sqrt(112) , значит b1n = 3*sqrt(7) и bn=sqrt(15^2-9*7)=9*sqrt(2) . xby равнобедренный и прямоугольный треугольник , положим что m точка пересечения bn и xy , тогда bm=36*sqrt(2) , и mn=bm-bn= 36*sqrt(2)-9*sqrt(2) = 27*sqrt(2) .
тогда если "a" это угол между плослкостью основания и данной плосокостью то
tga=b1n/mn = 3*sqrt(7) / 27*sqrt(2) = sqrt(14)/18 , откуда
a=arctg(sqrt(14)/18) .