Боковая поверхность - 3 трапеции, средняя линяя у каждой из трех - 4;
2 из них - с высотой 1;
грань, "противоположная" ребру длинны 1, - это равнобедренная трапеция, её высоту и надо вычислить, чтобы получить ответ.
проводим "вертикальную" плоскость через ребро 1, делящую основания "пополам" (то есть эта плоскость проходит через высоты оснований пирамиды, выходящие из вершин ребра 1).
сечение пирамиды, которое получится - это трапеция с боковой стороной 1, перпендикулярной основаниям, и основаниями 3*sqrt(3)/2 и 5*sqrt(3)/2. четвертая сторона легко вычисляется, и равна 2. Это и есть высота наклонной грани трапеции (поскольку сечение перпендикулярно основаниям пирамиды);
ответ S = 4*1+4*1+4*2 = 16
Поделитесь своими знаниями, ответьте на вопрос:
Прямая, параллельная стороне АВ треугольника АВС, пересекает его сторону АС в точке F, а сторону ВС — в точке D. Найдите площадь трапеции AFDB, если CD= 6 см, DB= 9см, а площадь треугольника FCD равна 20 см².
Решением треугольника называется нахождение всех его шести элементов (т. е. трех сторон и трех углов) по каким-нибудь трем данным элементам, определяющим треугольник.
Из суммы углов треугольника найдем угол С:
∠С=180º-45º-60º=75º
В прямоугольном ⊿ ВНС угол ВСН=90º-45º=45º
⊿ ВНС - равнобедренный, СН=ВН=ВС•sin 45º=(√3•√2):2
В ⊿ АНС сторона АС=СH:sin 60º
AC=[(√3•√2):2]:(√2):2=√2
АВ=ВН+АН
АН противолежит углу НСА, равному 90º-60º=30º
АН=АС:2=(√2):2
АВ=(√3•√2):2+(√2):2=(√3+1):√2
––––––––––––
Или по т. синусов:
АВ:sin75=BC:sin60
sin 60º=(√3):2
sin 75º=(√3+1):2√2 ( из таблицы тригонометрических функций)
АВ:(√3+1):2√2=(√3):[(√3):2]⇒
AB=(√3+1):√2
--------------
или по т.косинусов
AB²=BC²+AC²- 2BC•AC•cos75º
cos 75º=(√3-1):2√2
AB²=3+2- 2√6•((√3-1):2√2)⇒
AB=√(2+√3)
Оба найденных значения АВ равны - проверьте, возведя их в квадрат.
[√(2+√3)]²=[(√3+1):√2]²