Решение: Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую. Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение) Площадь S=a*h или 36=a*h Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с) sinα=2/3 или 2/3=h/c Из площади параллелограмма и sinα можно найти (h)^ 36=a*h h=36/a 2/3=h/c h=2*c/3 Приравняем величины (h): 36/а=2с/3 (запоминаем и это уравнение: Решим систему уравнений: 30=2а+2с 36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2) 36*3=2с*а
15=а+с 108=2ас Из первого уравнения системы найдём значение (а) а=15-с Подставим значение (а) во второе уравнение: 108=2*(15-с)*с 108=30с-2с² 2с²-30с+108=0 с1,2=(30+-D)/2*2 D=√(900-4*2*108)=√(900-864)=√36=6 c1,2=(30+-6)/4 с1=(30+6)/4=36/4=9 с2=(30-6)/4=24/4=6 В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма Примем боковую сторону параллелограмма с=9(см) Подставим с=9 в а=15-с а=15-9=6 (см) -верхние и нижние стороны параллелограмма Если мы примем боковую строну с, равную 6см, то а=15-6=9см То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см
Ivanovich-A.V
17.05.2021
Обозн.ромб АВСД,и мы знаем что у ромба все стороны равны,а их у него четыре и поэтому сторона ромба будет 100:4=25см. Диаг.ромба перпенд. перес. и точка перес.делится пополам,и поэт. образ. прям.треуг. пускай он будет АВОпо теор.Пифагора половина второго диагоналя будет равна АО в квадрате=ВО в квадрате- АВв квадрате,подставляем значения и получаем,АО =под корнем 25 в квадр. - 24 в квадрате =49 из под корня выходит 7,значит вторая диагональ АС=14,отсюда S=1/2d1*d2,d1=48,d2=14,ответ 336 см в квадрате
РК=7×0,8=5,6 ответ РК=5,6м