Пусть основание АВ, вершина, из которой проведены медиана и высота - С, середину АВ обозначим М, основание высоты К (СК - высота к АВ). Опишем вокруг АВС окружность и продлим СМ и СК до пересечения с ней. Пусть это точки, соответственно Е для СМ и Р для СК.
Мы знаем, что дуги АЕ и ВР равны.
Поэтому ЕР II AB
=> ЕР перпендикулярно СР,
=> EC - диаметр,
и => М - центр окружности. В самом деле, АМ = МВ, но АВ не перпендикулярно ЕС, а это возможно, только если М - цетр окружности (можно указать на равенство СК и КР, поэтому СМ = МС, и опять - М - центр)
Итак ,мы имеем ПРЯМОУГОЛЬНЫЙ треугольник АВС, угол АСВ = 90 градусов.
Из равенства дуг СВ и ВР (мы уже ДОКАЗАЛИ, что АВ - диаметр, пепендикулярный СР) следует, что угол СЕР в 2 раза больше ВСК,
то есть если считать угол ВСК = 5*х, то
угол ЕСР = 8*х, угол СЕР = 10*х.
Но угол ЕСР + угол СЕР = 90 градусов, откуда х = 5 градусов, угол САВ = угол КСВ = 5*х = 25 градусов, угол КВС = 90 - 25 = 65 градусов.
ответ углы треугольника 25, 65 и 90 градусов.
Поделитесь своими знаниями, ответьте на вопрос:
Объясните, , подробно: проверьте, что точки м1 (0; 1), m2 (½; √3/2), m3 (√2/2; √2/2), m4 (-√3/2; ½), а (1; 0), в (-1; 0) лежат на единичной полуокружности. выпишите значения синуса, косинуса и тангенса углов аом1 , аом2 , аом3 , аом4 , аов.
tg(fi) = y/x
sin(fi) = y/r
cos(fi)=x/r
для правильности определения полярного угла (смотрим на знаки при x и y для определения верной четверти!)
М1 (0; 1)
r = √(1²+0²) = 1; tg(fi) = +∞; sin(fi) = 1; cos(fi) = 0; fi = 90°
M2 (½;√3/2)
r = √(1/4+3/4) = 1; tg(fi) = √3; sin(fi) = √3/2; cos(fi) = 1/2; fi = 60°
M3 (√2/2; √2/2)
r = √(1/2+1/2) = 1; tg(fi) = 1; sin(fi) = 1/√2; cos(fi) = 1/√2; fi = 45°
M4 (-√3/2;½)
r = √(3/4+1/4) = 1; tg(fi) = -1/√3; sin(fi) = 1/2; cos(fi) = -√3/2; fi = 150°
А (1;0),
r = √(1+0) = 1; tg(fi) = 0; sin(fi) = 0; cos(fi) = 1; fi = 0°
В (-1; 0)
r = √(1+0) = 1; tg(fi) = 0; sin(fi) = 0; cos(fi) = -1; fi = 180°
Все эти точки лежат на единичной полуокружности 0<= fi <=180°
Т.к. полярный угол точки А равен нулю, то угол между ОА и направлением на точку из начала координат равен полярному углу точки