Объяснение:
Для доказательства потребуются признаки равенства треугольников.
Признаки параллелограмма.
Четырёхугольник является параллелограммом, если выполняется одно из следующих условий:
1. Противоположные стороны попарно равны ( AB = CD, AD = BC ).
2. Противоположные углы попарно равны ( A = C, B = D )
3. Две противоположные стороны равны и параллельны ( AB = CD, AB || CD )
4. Диагонали делятся в точке их пересечения пополам ( AO = OC, BO = OD)
Признак: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм".
Стороны АВ=СD (дано). Углы ВАС и АСD равны (дано). Это накрест лежащие углы при прямых АВ и CD и секущей АС. Следовательно, эти прямые параллельны (признак). АВСD - параллелограмм по приведенному выше признаку. Что и требовалось доказать.
2. Треугольники ADB и DCB равны по двум углам (<1=<4 и <2=<3 - дано) и стороне между ними - DB - общая. В равных треугольниках против равных углов лежат равные стороны.
AD=CB, DC=AB. ABCD - параллелограмм по признаку: "Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
ЧТД.
Поделитесь своими знаниями, ответьте на вопрос:
Высота ah ромба abcd делит сторону cd на отрезки dh=12 и ch=1. найдите высоту ромба
Все стороны ромба равны →
АВ = BC = CD = AD = DH + CH = 12 + 1 = 13
Рассмотрим ∆ ADH (угол AHD = 90°):
По теореме Пифагора:
AD² = DH² + AH²
AH² = 13² - 12² = 169 - 144 = 25
AH = 5
ОТВЕТ: 5