Объяснение:
1. Периметр треугольника равен P=a+b+c
Так как AB=CD, а AB = 4, то CD=4
остальное нам дано в условии, AD=6, AC=7
получается:
P = a+b+c = 4+6+7 = 17
ответ: периметр ACD = 17
2. В равнобедренном треугольнике углы при основании равны
∠А=∠С
В равнобедренном треугольнике боковые стороны равны
АВ=ВС
Точка К- середина стороны АВ. АК=КВ
Точка М - середина стороны ВС ВМ=МС
АК=КВ=ВМ=МС⇒ АК=МС
Медиана ВD делит основание АС пополам
BD=DC
Δ AKD=Δ DMC
по двум сторонам и углу между ними
1) BD=DC
2)АК=МС
3)∠А=∠С
ответ: TS=4
ΔTRS- равнобедренный, так как RТ=ТS, а высота, проведённая к основанию равнобедренного треугольника является его медианой, следовательно RЕ=ЕS=RS:2=24:2=12(см)
ΔTЕS- прямоугольный, следовательно по теореме Пифагора
TS²=ТЕ²+ЕS²=8²+12²=64+144=208
(см),
RT²=208
По теореме косинусов в ΔTRS
TS²= RТ² +RS² -2TR*RS* соs∠ R ;
2RТ*RS соs∠ R = RТ² +RS²- TS²; ( так как RТ=ТS, то RТ²-ТS²=0)
2RT*RS *соs ∠R =RS²;
RT*RS соs ∠R =RS²/2
В ΔRKS : RK=RT/2.
По теореме косинусов
SK²=RK²+RS²-2RK*RS*cos∠R=(RT/2)²+RS²-2(RT/2)*RS* соs ∠R=
=TR²/4+RS²- RT*RS* соs ∠R =TR²/4+RS² - RS²/2=
Поделитесь своими знаниями, ответьте на вопрос:
Окружности с центрами в точках m и n пересекаются в точках s и t, причём точки m и n лежат по одну сторону от прямой st.докажите что прямые mn и st перпендикулярны.
Концы хорды ST лежат на обеих окружностях.
Треугольники SMT и SNT равнобедренные, так как их боковые стороны - радиусы соответственно большей и меньшей окружностей.
В ∆ SMN и ∆ TMN стороны SM=MT; SN=NТ. MN- общая. Эти треугольники равны по 3-м сторонам.
Тогда ∠SМN=∠TMN, ⇒ MN- биссектриса угла SMT. В равнобедренном треугольнике биссектриса является ещё и медианой и высотой. Следовательно, MN и ST перпендикулярны.