Объяснение:
ермин, введённый Международным астрономическим союзом в 2006[1] году для обозначения объектов Солнечной системы, которые не являются ни планетами, ни карликовыми планетами, ни их спутниками:
Все прочитанные объекты, обращающиеся вокруг Солнца, за исключением спутников, должны быть отнесены к «малым телам Солнечной системы» ... В настоящее время в их список включено большинство астероидов Солнечной системы, большинство транснептуновых объектов (ТНО), а также кометы и прочие малые тела
Распределение кентавров и транснептуновых объектов по расстоянию от Солнца (увеличивается слева направо) и наклонению орбиты (увеличивается снизу вверх)
В настоящее время нет ясности, будет ли проведена для малых тел Солнечной системы нижняя граница размеров или к ним будут отнесены любые объекты до уровня метеороидов.
Естественные спутники, вообще говоря, отличаются от малых тел Солнечной системы только орбитами: они обращаются не вокруг Солнца, а вокруг других объектов Солнечной системы. Крупные спутники отличаются ещё и тем, что пребывают в гидростатическом равновесии (в результате чего имеют круглую форму).
Некоторые из крупнейших малых тел Солнечной системы в дальнейшем могут быть переклассифицированы в карликовые планеты, если в результате дальнейших исследований выяснится, что они находятся в состоянии гидростатического равновесия.
1)ответ:
V = 5√3/6 ед³.
Sбок = 144 ед².
Объяснение:
Судя по тому, что ∠АВС= 120°, параллелепипед не прямоугольный, а прямой. Это "две большие разницы".
Итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной ВС = 5 см, диагональю АС=7см и углом АВС = 120°. По теореме косинусов попробуем найти сторону АВ.
АС² =АВ²+ВС² - 2·АВ·ВС·Cos120. Cos120 = -Cos60 = - 1/2.
49 = AB²+25 - 2·AB·5·(-1/2) =>
АВ²+5·АВ -24 =0 => AB = 3cм
So = AB·BC·Sin120 = 3·5·√3/2.
V = So·h = (3·5·√3/2)·9 = 5√3/6 ед³. (площадь основания, умноженная на высоту).
Sбок = Р·h = 2(3+5)·9 = 144 ед² ( периметр, умноженный на высоту)
2)Обозначим радиус основания конуса R, высоту Н.
По заданию угол, тангенс которого равен Н/R, равен 30 градусов.
Н/R = tg30° = √3/3.
Отсюда Н = R√3/3 см.
Площадь сечения S = (1/2)*2R*H =RH = R*(R√3/3) = R²√3/3 см².
Приравняем по заданию: R²√3/3 = 9√3 см².
R² = 9*3, а R = 3√3 см.
Высота Н = R√3/3 = (3√3)*(√3/3) = 3 см.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите радиус цилиндра, у которого площадь боковой поверхности равна 11п, а высота равна 1, 1