IPMelnikovR146
?>

Вокружность с радиусом 10 см вписан прямоугольник abcd, у которого сторона ab в 2 раза меньше диагонали. а) найдите длину дуги окружности, стягивающейся дугой ab. б) площадь сегмента круга, ограниченного данной окружностью, который отсекает сторона аb. буду кто решит.

Геометрия

Ответы

gabramova
1). Сторона правильного шестиугольника равна радиусу описан. около него окружности. Центральный угол,опирающийся на сторону правильного шестиугольника равен 60 градусов.Значит, длина дуги =πRn⁰/180⁰ =πa*60⁰/180⁰=πa/3.
2). Обозначим прямоугольник АВСД, точка О - точка пересечения диагоналей. Так как АВ в 2 раза меньше диагонали, то угол АСВ=30⁰ (катет,равный половине гипотенузы, лежит против угла в 30⁰). Длина дуги АВ=π*10*30/180=5π/3.
Так как в точке О диагонали деляться попполам, то ΔВСД - равнобедренный и <ОВС=30⁰, значит <ВОС=180⁰-2*30⁰=180⁰-60⁰=120⁰.Тогда <АОД=120⁰(как вертикальный).Длина дуги АД равна π*10*120/180=20π/3.
galtig83
В основании цилиндра лежит круг. 
Площадь круга рассчитывается по формуле 
S = \pi r^{2} (1)
Где r - это радиус окружности. 

Поскольку по условиям задача S = 4, то найдем r
\pi r^{2} = 4 \\&#10;r^{2} = \frac{4}{ \pi} &#10;r = \frac{2}{ \sqrt{\pi}} (2)

Осевое сечение цилиндра - то прямоугольник, у которого одна из сторон - это диаметр основания цилиндра, а другая - высота цилиндра.
Тогда площадь осевого сечения
S = 2rh = 24&#10;h = \frac{24}{r} (3)

Отсюда
h = \frac{12}{r} (4)

Объем цилиндра рассчитывается по формуле
V = S * h = \pi r^{2} * h (5)

Где S - площадь основания (площадь круга), а h - высота цилиндра. 

Заменим в полученной формуле (5) h на r из формулы (4) и получим
V = \pi r^{2} * \frac{12}{r} = 12 \pi r ()

Заменяем в полученной формуле (6) r на раcсчитанное ранее r (2) и получим
V = 12 \pi * \frac{2}{ \sqrt{ \pi }} = 24 \sqrt{ \pi }
Kaccak8778
Сделаем  рисунок, соразмерный данным в условии задачи размерам. 
Пусть в треугольник АВС вписана окружность с центром М, и вокруг него же описана окружность с центром О.
ОС- радиус описанной окружности и равен 25.
ВН - биссектриса, высота и медиана треугольника АВС.
ВН - срединный перпендикуляр к АС. 
Центр вписанной окружности лежит в точке пересечения биссектрис углов треугольника, центр описанной - на пересечении срединных перпендикуляров  ⇒
центры вписанной  и описанной окружности лежат на ВН.
НС - половина основания АС и  равна 24.
Отношение катета и гипотенузы в треугольнике СОН - из троек Пифагора 7:24:25,  
ОН =7 ( можно проверить по т. Пифагора).
МК  - радиус окружности М, проведенный в точку касания. МК=МН
Треугольник ВКМ прямоугольный и подобен треугольнику АНВ ( общий острый угол при В).
АВ:ВМ=АН:КМ
ВН=ВО+ОН=25+7=32
АВ=√(ВН²+АН²)=40
КМ=ОН+ОМ=7+ОМ
ВМ=ВО-ОМ=25-ОМ
40:(25-ОМ)=24:(7+ОМ)
40*(7+ОМ)=24*(25+ОМ)
280+40*ОМ=24*25-24*ОМ
64 ОМ=320
ОМ=320:64=5
Расстояние между центрами вписанной и описанной окружностей треугольника равно 5

Основание равнобедренного остроугольного треугольника равно 48, а радиус описанной около него окружн

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вокружность с радиусом 10 см вписан прямоугольник abcd, у которого сторона ab в 2 раза меньше диагонали. а) найдите длину дуги окружности, стягивающейся дугой ab. б) площадь сегмента круга, ограниченного данной окружностью, который отсекает сторона аb. буду кто решит.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

tanyamurashova11352
sredova71121
Александровна1973
s777tver109
vova00831
Бочкарева Горохова1652
director3
Nikishina
lenalevmax7937
kuz-vlad21
stmr29
elozinskaya
kobzev-e
okasnab
horina12