vnolenev
?>

Даны координаты вершин треугольника abc a(-6; 1) b(2; 4) c(2; -2) докажите, что треугольник abc равнобедренный. выясните, является ли треугольник abc прямоугольным. найдите длинну медианы bk как называется тема, зная котррую можно решить эту

Геометрия

Ответы

shmanm26
1) Чтобы треугольник был равнобедренным, две стороны должны быть равны, то есть расстояния между точками должны быть равными
A(-6;1)   B(2;4)   C(2;-2)
AB= \sqrt{(X_B-X_A)^2+(Y_B-Y_A)^2}= \\ \\ =\sqrt{(2+6)^2+(4-1)^2} = \sqrt{64+9} =\sqrt{73} \\ \\ AC= \sqrt{(X_C-X_A)^2+(Y_C-Y_A)^2}= \\ \\ =\sqrt{(2+6)^2+(-2-1)^2} = \sqrt{64+9}= \sqrt{73} \\ \\ CB= \sqrt{(X_B-X_C)^2+(Y_B-Y_C)^2}= \\ \\ =\sqrt{(2-2)^2+(4+2)^2} = \sqrt{36} =6
AB = AC  ⇒ ΔABC - равнобедренный

2) ΔABC :    AB=AC=√73;  BC=6 .
В прямоугольном треугольнике равными могут быть только катеты. Самая длинная сторона - гипотенуза - не может быть равна катетам. 
BC=6 < AB=AC=√73  ⇒  ΔABC не является прямоугольным

3) BK - медиана  ⇒  AK = KC.  Координаты точки K
X_K= \frac{X_A+X_C}{2} = \frac{-6+2}{2} =-2 \\ \\ Y_K= \frac{Y_A+Y_C}{2} = \frac{1-2}{2} =-0,5
 B(2;4)   K(-2; -0,5)
BK = \sqrt{(X_K-X_B)^2+(Y_K-Y_B)^2} = \\ \\ = \sqrt{(-2-2)^2+(-0,5-4)^2}= \sqrt{16+20,25} = \sqrt{36,25}
BK = √36,25 ≈ 6,02

P.S. Тема: координатная плоскость, координаты точек, расстояние между точками
Даны координаты вершин треугольника abc a(-6; 1) b(2; 4) c(2; -2) докажите, что треугольник abc равн
Anastasiya81

* * * * * * * * * * * * * * * * * * * * * * *

Найдите боковую сторону AB трапеции ABCD, если ∠ABC =60° ,              ∠BCD =135°, а  CD =  27.

ответ:  9√6.

Объяснение:   Через  вершину B проведем  прямую  параллельную

боковой стороне СD до пересечения с основанием AD в точке E .

BCDE → параллелограмм ⇒ BE =CD =27 ; ∠CBE =180°-∠BCD =135° .

Из   ΔBAE :  AB/sin(∠BEA) = BE/sin(∠BEA)  * * *теорема синусов * * *

AB=BE*sin(∠BEA)/sin(∠BEA)=27sin45°/sin(180°- 60°) = 27*sin45°/sin60° =

= 9√6.             * * *  sin45°= (√2)/2  ,   sin60°=(√3)/2  * * *

Petrakova Ilyushin

* * * * * * * * * * * * * * * * * * * * * * *

Найдите боковую сторону AB трапеции ABCD, если ∠ABC =60° ,              ∠BCD =135°, а  CD =  27.

ответ:  9√6.

Объяснение:   Через  вершину B проведем  прямую  параллельную

боковой стороне СD до пересечения с основанием AD в точке E .

BCDE → параллелограмм ⇒ BE =CD =27 ; ∠CBE =180°-∠BCD =135° .

Из   ΔBAE :  AB/sin(∠BEA) = BE/sin(∠BEA)  * * *теорема синусов * * *

AB=BE*sin(∠BEA)/sin(∠BEA)=27sin45°/sin(180°- 60°) = 27*sin45°/sin60° =

= 9√6.             * * *  sin45°= (√2)/2  ,   sin60°=(√3)/2  * * *

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны координаты вершин треугольника abc a(-6; 1) b(2; 4) c(2; -2) докажите, что треугольник abc равнобедренный. выясните, является ли треугольник abc прямоугольным. найдите длинну медианы bk как называется тема, зная котррую можно решить эту
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mg4954531175
kiruha0378
Koshovkina1721
Voronov434
ЕлизаветаВладимирович
Точка о центр кола кут AOC=40.знайти кут ABC ів
garunkhachatryan
horst58
bykotatyana
amxvel7596
ЛаринаЛощаков
zoosalon-hollywood5
Кристина910
dmitrievanata83538
Pastushenkoen
many858