За умовою задачі в Δ АВС сторона АВ = 14 см, ВС = 10 см, АС = 16 см.
Так як М за умовою середина АВ, то АМ = МВ = АВ : 2 = 14 : 2 = 7 (см)
Так як точка К за умовою середина АС, то АК = КС = АС : 2 = 16 : 2 = 8 (см)
Так як точка М – середина АВ і точка К – середина АВ, то відрізок МК – середня лінія трикутника.
Середня лінія трикутника паралельна третій стороні і дорівнює її половині (властивість середньої лінії трикутника). Значить МК = ВС : 2 = 10 : 2 = 5 (см)
Знайдемо периметр трикутника АМК:
Р = АМ + АК + МК = 7 + 8 + 5 = 20 (см)
Відповідь: 20 см
sveta073120
14.09.2022
СD1 - диагональ грани DCC1D1 куба. АС лежит в плоскости грани АВСD и является ее диагональю. DС1 не лежит в той же плоскости и пересекает ее в точке, не принадлежащей АС. Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются. ⇒ прямые DC1 и AC - скрещивающиеся. Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным. Проведем в грани АВВ1А1 диагональ АВ1||DC1 и в грани ВСС1В1 диагональ СВ1 Все грани куба квадраты и равны между собой. АС=АВ1=СВ1 как диагонали равных квадратов. Треугольник АСВ1 - равносторонний, и углы между его сторонами равны 60º⇒ Угол между ДС1 и АС=углу между АВ1 и АС и равен 60º
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прямые, содержащие противолижащие ребра ( например, AB и CD любого тетраэдра ( ABCD ), скрещиваются - докажите
За умовою задачі в Δ АВС сторона АВ = 14 см, ВС = 10 см, АС = 16 см.
Так як М за умовою середина АВ, то АМ = МВ = АВ : 2 = 14 : 2 = 7 (см)
Так як точка К за умовою середина АС, то АК = КС = АС : 2 = 16 : 2 = 8 (см)
Так як точка М – середина АВ і точка К – середина АВ, то відрізок МК – середня лінія трикутника.
Середня лінія трикутника паралельна третій стороні і дорівнює її половині (властивість середньої лінії трикутника). Значить МК = ВС : 2 = 10 : 2 = 5 (см)
Знайдемо периметр трикутника АМК:
Р = АМ + АК + МК = 7 + 8 + 5 = 20 (см)
Відповідь: 20 см